Towards an ultra efficient kinetic scheme. Part III: High-performance-computing
暂无分享,去创建一个
[1] Giacomo Dimarco,et al. The Moment Guided Monte Carlo Method , 2011 .
[2] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[3] Giacomo Dimarco,et al. The Moment Guided Monte Carlo method for the Boltzmann equation , 2012, 1207.1005.
[4] Cory D. Hauck,et al. An asymptotic-preserving semi-Lagrangian algorithm for the time-dependent anisotropic heat transport equation , 2014, J. Comput. Phys..
[5] P. Bertrand,et al. Conservative numerical schemes for the Vlasov equation , 2001 .
[6] Andrzej Palczewski,et al. On approximation of the Boltzmann equation by discrete velocity models , 1995 .
[7] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[8] Kenichi Nanbu,et al. Direct simulation scheme derived from the Boltzmann equation. I - Monocomponent gases. II - Multicom , 1980 .
[9] Andrzej Palczewski,et al. Existence, Stability, and Convergence of Solutions of Discrete Velocity Models to the Boltzmann Equation , 1998 .
[10] Livio Gibelli,et al. Solving the Boltzmann equation on GPUs , 2011, Comput. Phys. Commun..
[11] Irene M. Gamba,et al. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..
[12] Giacomo Dimarco,et al. Numerical methods for kinetic equations* , 2014, Acta Numerica.
[13] C. Baranger,et al. Locally refined discrete velocity grids for stationary rarefied flow simulations , 2013, J. Comput. Phys..
[14] Giacomo Dimarco,et al. Fluid Solver Independent Hybrid Methods for Multiscale Kinetic Equations , 2009, SIAM J. Sci. Comput..
[15] C. Cercignani. The Boltzmann equation and its applications , 1988 .
[16] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[17] Raphaël Loubère,et al. Towards an ultra efficient kinetic scheme. Part I: Basics on the BGK equation , 2012, J. Comput. Phys..
[18] Christian Rey,et al. GPU-accelerated real-time visualization and interaction for coupled Fluid Dynamics , 2013 .
[19] S. Mischler,et al. About the splitting algorithm for Boltzmann and B , 1996 .
[20] Michael Dumbser,et al. Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions , 2014, J. Comput. Phys..
[21] Lorenzo Pareschi,et al. Towards a Hybrid Monte Carlo Method for Rarefied Gas Dynamics , 2004 .
[22] Francesco Salvarani,et al. GPU-accelerated numerical simulations of the Knudsen gas on time-dependent domains , 2013, Comput. Phys. Commun..
[23] Eric Sonnendrücker,et al. Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..
[24] Francis Filbet,et al. High order numerical methods for the space non-homogeneous Boltzmann equation , 2003 .
[25] Eric Sonnendrücker,et al. A forward semi-Lagrangian method for the numerical solution of the Vlasov equation , 2008, Comput. Phys. Commun..
[26] R. Caflisch. The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .
[27] Jeffrey Haack. A hybrid OpenMP and MPI implementation of a conservative spectral method for the Boltzmann equation , 2013 .
[28] Thomas M. M. Homolle,et al. A low-variance deviational simulation Monte Carlo for the Boltzmann equation , 2007, J. Comput. Phys..
[29] T. Nishida. Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation , 1978 .
[30] Luc Mieussens,et al. Local discrete velocity grids for deterministic rarefied flow simulations , 2014, J. Comput. Phys..
[31] Livio Gibelli,et al. Direct solution of the Boltzmann equation for a binary mixture on GPUs , 2011 .
[32] R. Keppens,et al. Nonlinear dynamics of Kelvin–Helmholtz unstable magnetized jets: Three-dimensional effects , 1999 .
[33] Raphaël Loubère,et al. Towards an ultra efficient kinetic scheme. Part II: The high order case , 2012, J. Comput. Phys..
[34] P. Bhatnagar,et al. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .
[35] M. S. Ivanov,et al. Parallelization of algorithms for solving the Boltzmann equation for GPU‐based computations , 2011 .
[36] Luc Mieussens,et al. DISCRETE VELOCITY MODEL AND IMPLICIT SCHEME FOR THE BGK EQUATION OF RAREFIED GAS DYNAMICS , 2000 .
[37] Irene M. Gamba,et al. High performance computing with a conservative spectral Boltzmann solver , 2012, 1211.0540.
[38] Livio Gibelli,et al. Solving model kinetic equations on GPUs , 2011 .
[39] Andrew J. Christlieb,et al. Arbitrarily high order Convected Scheme solution of the Vlasov-Poisson system , 2013, J. Comput. Phys..
[40] Yaman Güçlü,et al. A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations of neutral gas flows , 2012, J. Comput. Phys..
[41] Lorenzo Pareschi,et al. Numerical Solution of the Boltzmann Equation I: Spectrally Accurate Approximation of the Collision Operator , 2000, SIAM J. Numer. Anal..
[42] G. Toscani,et al. Fast spectral methods for the Fokker-Planck-Landau collision operator , 2000 .
[43] C. Birdsall,et al. Plasma Physics via Computer Simulation , 2018 .
[44] Andrzej Palczewski,et al. A Consistency Result for a Discrete-Velocity Model of the Boltzmann Equation , 1997 .