Towards an ultra efficient kinetic scheme. Part III: High-performance-computing

Abstract In this paper we demonstrate the capability of the fast semi-Lagrangian scheme developed in [20] and [21] to deal with parallel architectures. First, we will present the behaviors of such scheme on a classical architecture using OpenMP and then on GPU (Graphics Processing Unit) architecture using CUDA. The goal is to prove that this new scheme is well adapted to these types of parallelizations, and, moreover that the gain in CPU time is substantial on nowadays affordable computers. We first present the sequential version of our high-order kinetic scheme and focus on important details for an effective parallel implementation. Then, we introduce the specific treatments and algorithms which have been developed for an OpenMP and CUDA parallelizations. Numerical tests are shown for the full 3D/3D simulations. These assess the important speed-up factor of the method gained between the sequential code and the parallel versions and its very good scalability which makes this approach a real competitor with respect to existing schemes for the solution of multidimensional kinetic models.

[1]  Giacomo Dimarco,et al.  The Moment Guided Monte Carlo Method , 2011 .

[2]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[3]  Giacomo Dimarco,et al.  The Moment Guided Monte Carlo method for the Boltzmann equation , 2012, 1207.1005.

[4]  Cory D. Hauck,et al.  An asymptotic-preserving semi-Lagrangian algorithm for the time-dependent anisotropic heat transport equation , 2014, J. Comput. Phys..

[5]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[6]  Andrzej Palczewski,et al.  On approximation of the Boltzmann equation by discrete velocity models , 1995 .

[7]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[8]  Kenichi Nanbu,et al.  Direct simulation scheme derived from the Boltzmann equation. I - Monocomponent gases. II - Multicom , 1980 .

[9]  Andrzej Palczewski,et al.  Existence, Stability, and Convergence of Solutions of Discrete Velocity Models to the Boltzmann Equation , 1998 .

[10]  Livio Gibelli,et al.  Solving the Boltzmann equation on GPUs , 2011, Comput. Phys. Commun..

[11]  Irene M. Gamba,et al.  Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..

[12]  Giacomo Dimarco,et al.  Numerical methods for kinetic equations* , 2014, Acta Numerica.

[13]  C. Baranger,et al.  Locally refined discrete velocity grids for stationary rarefied flow simulations , 2013, J. Comput. Phys..

[14]  Giacomo Dimarco,et al.  Fluid Solver Independent Hybrid Methods for Multiscale Kinetic Equations , 2009, SIAM J. Sci. Comput..

[15]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[16]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[17]  Raphaël Loubère,et al.  Towards an ultra efficient kinetic scheme. Part I: Basics on the BGK equation , 2012, J. Comput. Phys..

[18]  Christian Rey,et al.  GPU-accelerated real-time visualization and interaction for coupled Fluid Dynamics , 2013 .

[19]  S. Mischler,et al.  About the splitting algorithm for Boltzmann and B , 1996 .

[20]  Michael Dumbser,et al.  Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions , 2014, J. Comput. Phys..

[21]  Lorenzo Pareschi,et al.  Towards a Hybrid Monte Carlo Method for Rarefied Gas Dynamics , 2004 .

[22]  Francesco Salvarani,et al.  GPU-accelerated numerical simulations of the Knudsen gas on time-dependent domains , 2013, Comput. Phys. Commun..

[23]  Eric Sonnendrücker,et al.  Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..

[24]  Francis Filbet,et al.  High order numerical methods for the space non-homogeneous Boltzmann equation , 2003 .

[25]  Eric Sonnendrücker,et al.  A forward semi-Lagrangian method for the numerical solution of the Vlasov equation , 2008, Comput. Phys. Commun..

[26]  R. Caflisch The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .

[27]  Jeffrey Haack A hybrid OpenMP and MPI implementation of a conservative spectral method for the Boltzmann equation , 2013 .

[28]  Thomas M. M. Homolle,et al.  A low-variance deviational simulation Monte Carlo for the Boltzmann equation , 2007, J. Comput. Phys..

[29]  T. Nishida Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation , 1978 .

[30]  Luc Mieussens,et al.  Local discrete velocity grids for deterministic rarefied flow simulations , 2014, J. Comput. Phys..

[31]  Livio Gibelli,et al.  Direct solution of the Boltzmann equation for a binary mixture on GPUs , 2011 .

[32]  R. Keppens,et al.  Nonlinear dynamics of Kelvin–Helmholtz unstable magnetized jets: Three-dimensional effects , 1999 .

[33]  Raphaël Loubère,et al.  Towards an ultra efficient kinetic scheme. Part II: The high order case , 2012, J. Comput. Phys..

[34]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[35]  M. S. Ivanov,et al.  Parallelization of algorithms for solving the Boltzmann equation for GPU‐based computations , 2011 .

[36]  Luc Mieussens,et al.  DISCRETE VELOCITY MODEL AND IMPLICIT SCHEME FOR THE BGK EQUATION OF RAREFIED GAS DYNAMICS , 2000 .

[37]  Irene M. Gamba,et al.  High performance computing with a conservative spectral Boltzmann solver , 2012, 1211.0540.

[38]  Livio Gibelli,et al.  Solving model kinetic equations on GPUs , 2011 .

[39]  Andrew J. Christlieb,et al.  Arbitrarily high order Convected Scheme solution of the Vlasov-Poisson system , 2013, J. Comput. Phys..

[40]  Yaman Güçlü,et al.  A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations of neutral gas flows , 2012, J. Comput. Phys..

[41]  Lorenzo Pareschi,et al.  Numerical Solution of the Boltzmann Equation I: Spectrally Accurate Approximation of the Collision Operator , 2000, SIAM J. Numer. Anal..

[42]  G. Toscani,et al.  Fast spectral methods for the Fokker-Planck-Landau collision operator , 2000 .

[43]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[44]  Andrzej Palczewski,et al.  A Consistency Result for a Discrete-Velocity Model of the Boltzmann Equation , 1997 .