Cholinergic modulation of neuronal excitability and recurrent excitation‐inhibition in prefrontal cortex circuits: implications for gamma oscillations

•  Previous studies indicate that cholinergic neuromodulation is required for cognitive processes and for gamma oscillatory activity in neocortical networks in vivo. The cholinergic agonist carbachol (CCh) induces gamma oscillations in vitro, via mechanisms that may be shared with those mediating in vivo gamma oscillations. •  Here, we studied the effects of CCh on cortical circuit components thought to be critical for gamma oscillations, and found that CCh stimulated firing of pyramidal cells (PCs) and increased excitatory synaptic input onto fast‐spiking interneurons (FSNs). •  CCh also modulated synaptic transmission between FSNs and PCs, decreasing synaptic depression during repetitive presynaptic firing, while simultaneously reducing the unitary synaptic currents. •  CCh increased the probability of neuron firing per oscillation cycle when PCs and FSNs fired in response to oscillatory input at gamma frequency. •  Combined, these effects of CCh may help explain the contribution of cholinergic modulation to gamma oscillations.

[1]  J. Porter,et al.  Muscarinic Receptors Modulate the Intrinsic Excitability of Infralimbic Neurons and Consolidation of Fear Extinction , 2012, Neuropsychopharmacology.

[2]  Y. Kawaguchi,et al.  Selective cholinergic modulation of cortical GABAergic cell subtypes. , 1997, Journal of neurophysiology.

[3]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  D. Bucci,et al.  M1 Receptors Mediate Cholinergic Modulation of Excitability in Neocortical Pyramidal Neurons , 2009, The Journal of Neuroscience.

[5]  J. Rossier,et al.  Kainate Receptors Regulate Unitary IPSCs Elicited in Pyramidal Cells by Fast-Spiking Interneurons in the Neocortex , 2001, The Journal of Neuroscience.

[6]  György Buzsáki,et al.  Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo , 1998, The European journal of neuroscience.

[7]  Andrea Hasenstaub,et al.  Cell Type-Specific Control of Neuronal Responsiveness by Gamma-Band Oscillatory Inhibition , 2010, The Journal of Neuroscience.

[8]  P. C. Janiesch,et al.  Cholinergic Control in Developing Prefrontal–Hippocampal Networks , 2011, The Journal of Neuroscience.

[9]  Adriano B. L. Tort,et al.  Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons , 2009, Proceedings of the National Academy of Sciences.

[10]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[11]  C. Constantinidis,et al.  Cholinergic modulation of working memory activity in primate prefrontal cortex. , 2011, Journal of neurophysiology.

[12]  C. McBain,et al.  M3 Muscarinic Acetylcholine Receptor Expression Confers Differential Cholinergic Modulation to Neurochemically Distinct Hippocampal Basket Cell Subtypes , 2010, The Journal of Neuroscience.

[13]  J. O’Neill,et al.  Gamma Oscillatory Firing Reveals Distinct Populations of Pyramidal Cells in the CA1 Region of the Hippocampus , 2008, The Journal of Neuroscience.

[14]  Hideo Tsukada,et al.  Muscarinic Receptor Occupancy and Cognitive Impairment: A PET Study with [11C](+)3-MPB and Scopolamine in Conscious Monkeys , 2011, Neuropsychopharmacology.

[15]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[16]  Yasuo Kawaguchi,et al.  Heterogeneity of phasic cholinergic signaling in neocortical neurons. , 2007, Journal of neurophysiology.

[17]  Erika E Fanselow,et al.  Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. , 2008, Journal of neurophysiology.

[18]  A. Beaudet,et al.  Neurotensin-Induced Bursting of Cholinergic Basal Forebrain Neurons Promotes γ and θ Cortical Activity Together with Waking and Paradoxical Sleep , 2000, The Journal of Neuroscience.

[19]  N. Koshikawa,et al.  Postsynaptic cell type-dependent cholinergic regulation of GABAergic synaptic transmission in rat insular cortex. , 2010, Journal of neurophysiology.

[20]  Masahiko Watanabe,et al.  Two distinct classes of muscarinic action on hippocampal inhibitory synapses: M2‐mediated direct suppression and M1/M3‐mediated indirect suppression through endocannabinoid signalling , 2004, The European journal of neuroscience.

[21]  V. Bringuier,et al.  Synaptic origin and stimulus dependency of neuronal oscillatory activity in the primary visual cortex of the cat. , 1997, The Journal of physiology.

[22]  G. González-Burgos,et al.  Postsynaptic diacylglycerol lipase α mediates retrograde endocannabinoid suppression of inhibition in mouse prefrontal cortex , 2011, The Journal of physiology.

[23]  S. Hestrin,et al.  Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex , 1998, Nature Neuroscience.

[24]  D. Kullmann,et al.  Oscillatory dynamics in the hippocampus support dentate gyrus–CA3 coupling , 2012, Nature Neuroscience.

[25]  Daniel Durstewitz,et al.  Comparing the prefrontal cortex of rats and primates: Insights from electrophysiology , 2008, Neurotoxicity Research.

[26]  W. Regehr Short-term presynaptic plasticity. , 2012, Cold Spring Harbor perspectives in biology.

[27]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[28]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[29]  Norbert Hájos,et al.  Network mechanisms of gamma oscillations in the CA3 region of the hippocampus , 2009, Neural Networks.

[30]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[31]  W. Singer,et al.  Role of Reticular Activation in the Modulation of Intracortical Synchronization , 1996, Science.

[32]  Edward O. Mann,et al.  Perisomatic Feedback Inhibition Underlies Cholinergically Induced Fast Network Oscillations in the Rat Hippocampus In Vitro , 2005, Neuron.

[33]  P. Jonas,et al.  Efficacy and Stability of Quantal GABA Release at a Hippocampal Interneuron–Principal Neuron Synapse , 2000, The Journal of Neuroscience.

[34]  O. Paulsen,et al.  Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro , 1998, Nature.

[35]  Nancy Kopell,et al.  Synchronization in Networks of Excitatory and Inhibitory Neurons with Sparse, Random Connectivity , 2003, Neural Computation.

[36]  Daniel Avesar,et al.  Selective serotonergic excitation of callosal projection neurons , 2012, Front. Neural Circuits.

[37]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[38]  M. Whittington,et al.  Segregation of Axonal and Somatic Activity During Fast Network Oscillations , 2012, Science.

[39]  J. Deuchars,et al.  CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices , 1998, The Journal of physiology.

[40]  W. Singer,et al.  Abnormal neural oscillations and synchrony in schizophrenia , 2010, Nature Reviews Neuroscience.

[41]  M. Scanziani,et al.  Instantaneous Modulation of Gamma Oscillation Frequency by Balancing Excitation with Inhibition , 2009, Neuron.

[42]  Daniel A. Nagode,et al.  Optogenetic Release of ACh Induces Rhythmic Bursts of Perisomatic IPSCs in Hippocampus , 2011, PloS one.

[43]  J. Jefferys,et al.  High‐frequency gamma oscillations coexist with low‐frequency gamma oscillations in the rat visual cortex in vitro , 2010, The European journal of neuroscience.

[44]  Fiona E. N. LeBeau,et al.  Recruitment of Parvalbumin-Positive Interneurons Determines Hippocampal Function and Associated Behavior , 2007, Neuron.

[45]  L. Martin,et al.  Heterogeneous susceptibility of GABAA receptor‐mediated IPSCs to depolarization‐induced suppression of inhibition in rat hippocampus , 2001, The Journal of physiology.

[46]  Maria V. Sanchez-Vives,et al.  Slow and fast rhythms generated in the cerebral cortex of the anesthetized mouse. , 2011, Journal of neurophysiology.

[47]  G. Knott,et al.  Experience and Activity-Dependent Maturation of Perisomatic GABAergic Innervation in Primary Visual Cortex during a Postnatal Critical Period , 2004, The Journal of Neuroscience.

[48]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[49]  O. Paulsen,et al.  Spike Timing of Distinct Types of GABAergic Interneuron during Hippocampal Gamma Oscillations In Vitro , 2004, The Journal of Neuroscience.

[50]  Norbert Hájos,et al.  Synaptic Currents in Anatomically Identified CA3 Neurons during Hippocampal Gamma Oscillations In Vitro , 2006, The Journal of Neuroscience.

[51]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[52]  István Ulbert,et al.  Supplementary material to : Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus , 2010 .

[53]  P. Jonas,et al.  Presynaptic short‐term depression is maintained during regulation of transmitter release at a GABAergic synapse in rat hippocampus , 2002, The Journal of physiology.

[54]  J. Csicsvari,et al.  Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat , 2003, Neuron.

[55]  Martin Vreugdenhil,et al.  NMDA Receptor Hypofunction Phase Couples Independent γ-Oscillations in the Rat Visual Cortex , 2011, Neuropsychopharmacology.

[56]  B. Rudy,et al.  Perisomatic GABA Release and Thalamocortical Integration onto Neocortical Excitatory Cells Are Regulated by Neuromodulators , 2008, Neuron.

[57]  Fiona E. N. LeBeau,et al.  Cholinergic Neuromodulation Controls Directed Temporal Communication in Neocortex in Vitro , 2010, Front. Neural Circuits.

[58]  W. Singer,et al.  Short- and Long-Term Effects of Cholinergic Modulation on Gamma Oscillations and Response Synchronization in the Visual Cortex , 2004, The Journal of Neuroscience.

[59]  A. T. Gulledge,et al.  M1 and M4 receptors modulate hippocampal pyramidal neurons. , 2011, Journal of neurophysiology.

[60]  P. Somogyi,et al.  Temporal Dynamics of Parvalbumin-Expressing Axo-axonic and Basket Cells in the Rat Medial Prefrontal Cortex In Vivo , 2012, Journal of Neuroscience.

[61]  I. Stanford,et al.  Pharmacologically induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary motor cortex in vitro , 2008, Neuroscience.

[62]  A. Beaudet,et al.  Neurotensin-induced bursting of cholinergic basal forebrain neurons promotes gamma and theta cortical activity together with waking and paradoxical sleep. , 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  T. Freund,et al.  Distinct synaptic properties of perisomatic inhibitory cell types and their different modulation by cholinergic receptor activation in the CA3 region of the mouse hippocampus , 2010, The European journal of neuroscience.

[64]  Fiona E. N. LeBeau,et al.  Multiple origins of the cortical gamma rhythm , 2011, Developmental neurobiology.

[65]  M. Baxter,et al.  Cholinergic modulation of a specific memory function of prefrontal cortex , 2011, Nature Neuroscience.

[66]  C. McBain,et al.  Cholinergic modulation amplifies the intrinsic oscillatory properties of CA1 hippocampal cholecystokinin‐positive interneurons , 2011, The Journal of physiology.

[67]  W. Singer,et al.  Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential , 1998, Neuroscience.

[68]  L. Acsády,et al.  Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus , 1997, Neuroscience.

[69]  Y. Yanagawa,et al.  Developmental profile of GABAA‐mediated synaptic transmission in pyramidal cells of the somatosensory cortex , 2008, The European journal of neuroscience.

[70]  O. Paulsen,et al.  Mechanisms underlying gamma ('40 Hz') network oscillations in the hippocampus--a mini-review. , 2005, Progress in biophysics and molecular biology.

[71]  W. Singer,et al.  Stabilization of visual responses through cholinergic activation , 2010, Neuroscience.

[72]  M. Vreugdenhil,et al.  NMDA receptor hypofunction phase-couples independent gamma oscillations in the rat visual cortex. Authors: , 2010 .

[73]  R. Reid,et al.  Broadly Tuned Response Properties of Diverse Inhibitory Neuron Subtypes in Mouse Visual Cortex , 2010, Neuron.

[74]  B. Alger,et al.  Synaptic Cross Talk between Perisomatic-Targeting Interneuron Classes Expressing Cholecystokinin and Parvalbumin in Hippocampus , 2009, The Journal of Neuroscience.

[75]  O. Paulsen,et al.  Identification of the current generator underlying cholinergically induced gamma frequency field potential oscillations in the hippocampal CA3 region , 2010, The Journal of physiology.

[76]  Wolf Singer,et al.  Gamma-Band Activity in Human Prefrontal Cortex Codes for the Number of Relevant Items Maintained in Working Memory , 2012, The Journal of Neuroscience.

[77]  T. Freund,et al.  Perisomatic Inhibition , 2007, Neuron.

[78]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[79]  Daniel Johnston,et al.  Projection-Specific Neuromodulation of Medial Prefrontal Cortex Neurons , 2010, The Journal of Neuroscience.

[80]  G. Tamás,et al.  Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro , 1998, The Journal of physiology.

[81]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[82]  Pablo Fuentealba,et al.  Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations In Vivo , 2007, The Journal of Neuroscience.

[83]  Mark A. Rossi,et al.  Prefrontal cortical mechanisms underlying delayed alternation in mice. , 2012, Journal of neurophysiology.

[84]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[85]  Jozsef Csicsvari,et al.  Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations , 2005, The Journal of Neuroscience.

[86]  T. Sejnowski,et al.  Effects of cholinergic modulation on responses of neocortical neurons to fluctuating input. , 1997, Cerebral cortex.

[87]  Marc W Howard,et al.  Gamma oscillations correlate with working memory load in humans. , 2003, Cerebral cortex.

[88]  J. Beaulieu,et al.  Confocal Analysis of Cholinergic and Dopaminergic Inputs onto Pyramidal Cells in the Prefrontal Cortex of Rodents , 2010, Front. Neuroanat..

[89]  G. Drummond Reporting ethical matters in The Journal of Physiology: standards and advice , 2009, The Journal of physiology.

[90]  S. Hestrin,et al.  Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[91]  D. Prince,et al.  Cholinergic switching within neocortical inhibitory networks. , 1998, Science.

[92]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[93]  D. McCormick,et al.  Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential , 2006, Nature.