Aggregation of carbon dioxide sequestration storage assessment units

The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessments, the area under investigation is split into smaller, more manageable storage assessment units (SAUs), which must be aggregated with correctly propagated uncertainty to the basin, regional, and national scales. The aggregation methodology requires two types of data: marginal probability distributions of storage resource for each SAU, and a correlation matrix obtained by expert elicitation describing interdependencies between pairs of SAUs. Dependencies arise because geologic analogs, assessment methods, and assessors often overlap. The correlation matrix is used to induce rank correlation, using a Cholesky decomposition, among the empirical marginal distributions representing individually assessed SAUs. This manuscript presents a probabilistic aggregation method tailored to the correlations and dependencies inherent to a CO2 storage assessment. Aggregation results must be presented at the basin, regional, and national scales. A single stage approach, in which one large correlation matrix is defined and subsets are used for different scales, is compared to a multiple stage approach, in which new correlation matrices are created to aggregate intermediate results. Although the single-stage approach requires determination of significantly more correlation coefficients, it captures geologic dependencies among similar units in different basins and it is less sensitive to fluctuations in low correlation coefficients than the multiple stage approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to basin, regional, and national scales.

[1]  Leslie F. Ruppert,et al.  A Probabilistic Assessment Methodology for the Evaluation of Geologic Carbon Dioxide Storage , 2010 .

[2]  Peter D. Warwick,et al.  National assessment of geologic carbon dioxide storage resources: methodology implementation , 2013 .

[3]  Luís C. Neves,et al.  A probabilistic assessment methodology for life cycle analysis of structures , 2012 .

[4]  Jane M. Booker,et al.  Eliciting and analyzing expert judgement - a practical guide , 2001, ASA-SIAM series on statistics and applied probability.

[5]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[6]  안태경 Social Science Research Network , 2005 .

[7]  J. H. Schuenemeyer,et al.  Predictive Probability Distributions for Petroleum Unit Resource Projections via Hierarchical Modeling , 2012 .

[8]  N. Higham Computing the nearest correlation matrix—a problem from finance , 2002 .

[9]  Ton Wildenborg,et al.  Underground geological storage , 2005 .

[10]  A. Frigessi,et al.  Statistical rehabilitation of improper correlation matrices , 2011 .

[11]  R. Olea On the Use of the Beta Distribution in Probabilistic Resource Assessments , 2011 .

[12]  K. Osadetz,et al.  Using copulas for implementation of variable dependencies in petroleum resource assessment: Example from Beaufort-Mackenzie Basin, Canada , 2012 .

[13]  Pierre Delfiner,et al.  Partial Probabilistic Addition: A Practical Approach for Aggregating Gas Resources , 2008 .

[14]  Data Base for a National Mineral-Resource Assessment of Undiscovered Deposits of Gold, Silver, Copper, Lead, and Zinc in the Conterminous United States , 1996 .

[15]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[16]  J. H. Schuenemeyer,et al.  Aggregation Methodology for the Circum-Arctic Resource Appraisal , 2010 .

[17]  Kawee Numpacharoen,et al.  An Intuitively Valid Algorithm for Adjusting the Correlation Matrix in Risk Management and Option Pricing , 2012 .

[18]  Ritu Gupta,et al.  Probabilistic Aggregation of Oil and Gas Field Resource Estimates and Project Portfolio Analysis , 2010 .

[19]  E. Elton Modern portfolio theory and investment analysis , 1981 .

[20]  J. H. Schuenemeyer Methodology for the 2005 USGS assessment of undiscovered oil and gas resources, central North Slope, Alaska , 2005 .

[21]  J. H. Schuenemeyer,et al.  Probabilistic Aggregation of Individual Assessment Units in the U.S. Geological Survey National CO2 Sequestration Assessment , 2013 .