Fundamentals and advances in magnetic hyperthermia

Nowadays, magnetic hyperthermia constitutes a complementary approach to cancer treatment. The use of magnetic particles as heating mediators, proposed in the 1950s, provides a novel strategy for improving tumor treatment and, consequently, patient quality of life. This review reports a broad overview about several aspects of magnetic hyperthermia addressing new perspectives and the progress on relevant features such as the ad hoc preparation of magnetic nanoparticles, physical modeling of magnetic heating, methods to determine the heat dissipation power of magnetic colloids including the development of experimental apparatus and the influence of biological matrices on the heating efficiency.

[1]  H. Gu,et al.  Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes , 2011 .

[2]  Roberto Cingolani,et al.  Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles. , 2013, Nano letters.

[3]  Yu Zhang,et al.  Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA , 2008 .

[4]  P. Moroz,et al.  Magnetically mediated hyperthermia: current status and future directions , 2002, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[5]  Juan-Mari Collantes,et al.  Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry) , 2014, Nanotechnology.

[6]  O. Marinică,et al.  Iron/iron oxides core–shell nanoparticles by laser pyrolysis: Structural characterization and enhanced particle dispersion , 2007 .

[7]  L. Trahms,et al.  The influence of hydrodynamic diameter and core composition on the magnetoviscous effect of biocompatible ferrofluids , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[8]  D. Baldomir,et al.  Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling , 2014 .

[9]  G. Koren,et al.  The efficacy of oral deferiprone in acute iron poisoning. , 2000, The American journal of emergency medicine.

[10]  S. Dutz,et al.  Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[11]  M. Pileni,et al.  New Technique for Synthesizing Iron Ferrite Magnetic Nanosized Particles , 1997 .

[12]  Marc Respaud,et al.  Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization , 2011 .

[13]  F. Dughiero,et al.  Numerical FEM Models for the Planning of Magnetic Induction Hyperthermia Treatments With Nanoparticles , 2009, IEEE Transactions on Magnetics.

[14]  E. Wissler,et al.  Pennes' 1948 paper revisited. , 1998, Journal of applied physiology.

[15]  Peter Wust,et al.  Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. , 2004, Medical physics.

[16]  M. Franchini,et al.  Synthesis and coating of cobalt ferrite nanoparticles: a first step toward the obtainment of new magnetic nanocarriers. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[17]  R. E. Rosensweig,et al.  Heating magnetic fluid with alternating magnetic field , 2002 .

[18]  Q. Pankhurst,et al.  On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials , 2014 .

[19]  V. Cabuil,et al.  Synthesis of Trimagnetic Multishell MnFe2 O4 @CoFe2 O4 @NiFe2 O4 Nanoparticles. , 2015, Small.

[20]  G. Stucky,et al.  Cooperative Assembly of Magnetic Nanoparticles and Block Copolypeptides in Aqueous Media , 2003 .

[21]  Etienne Duguet,et al.  A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran , 2005 .

[22]  S. Dutz,et al.  Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  T. Oda,et al.  Minimally required heat doses for various tumour sizes in induction heating cancer therapy determined by computer simulation using experimental data , 2010, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[24]  Jon Dobson,et al.  In situ measurement of magnetization relaxation of internalized nanoparticles in live cells. , 2015, ACS nano.

[25]  Bing Xu,et al.  Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. , 2004, Journal of the American Chemical Society.

[26]  M. H. Mendonça,et al.  Hyperthermia studies of ferrite nanoparticles synthesized in the presence of cotton , 2015 .

[27]  Francesca Peiró,et al.  Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications , 2013, Scientific Reports.

[28]  R. Molday,et al.  Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. , 1982, Journal of immunological methods.

[29]  J. Frenkel,et al.  Spontaneous and Induced Magnetisation in Ferromagnetic Bodies. , 1930, Nature.

[30]  L. Lartigue,et al.  Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. , 2013, ACS nano.

[31]  G. Goya,et al.  The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles , 2011, Nanoscale research letters.

[32]  Seongtae Bae,et al.  Physical contribution of Néel and Brown relaxation to interpreting intracellular hyperthermia characteristics using superparamagnetic nanofluids. , 2013, Journal of nanoscience and nanotechnology.

[33]  Tronc,et al.  Superparamagnetic relaxation of weakly interacting particles. , 1994, Physical review letters.

[34]  J. Greneche,et al.  Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting , 2014 .

[35]  E. A. Périgo,et al.  On the specific absorption rate of hyperthermia fluids , 2013 .

[36]  Jeffrey I. Zink,et al.  Taking the Temperature of the Interiors of Magnetically Heated Nanoparticles , 2014, ACS nano.

[37]  Taeghwan Hyeon,et al.  Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. , 2008, Angewandte Chemie.

[38]  W. Coffey,et al.  Thermal fluctuations of magnetic nanoparticles: Fifty years after Brown , 2012, 1209.0298.

[39]  C. Marquina,et al.  Relaxation time diagram for identifying heat generation mechanisms in magnetic fluid hyperthermia , 2014, Journal of Nanoparticle Research.

[40]  N. Usov,et al.  Hysteresis losses in a dense superparamagnetic nanoparticle assembly , 2012 .

[41]  F. Monte,et al.  Formation of γ-Fe2O3 Isolated Nanoparticles in a Silica Matrix , 1997 .

[42]  H. Winnischofer,et al.  Effects of magnetic interparticle coupling on the blocking temperature of ferromagnetic nanoparticle arrays , 2007 .

[43]  B. Payre,et al.  Targeting a G-protein-coupled receptor overexpressed in endocrine tumors by magnetic nanoparticles to induce cell death. , 2014, ACS nano.

[44]  A. Golneshan,et al.  The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method , 2011, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[45]  R. Miranda,et al.  Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions , 2012 .

[46]  P. Moroz,et al.  Targeting liver tumors with hyperthermia: Ferromagnetic embolization in a rabbit liver tumor model , 2001, Journal of surgical oncology.

[47]  T. Verbiest,et al.  Magneto-optical harmonic susceptometry of superparamagnetic materials , 2013 .

[48]  M. Tadic,et al.  Magnetic properties of nanoparticle La0.7Ca0.3MnO3 prepared by glycine–nitrate method without additional heat treatment , 2008 .

[49]  R. E. Rosensweig,et al.  NONMECHANICAL TORQUE‐DRIVEN FLOW OF A FERROMAGNETIC FLUID BY AN ELECTROMAGNETIC FIELD , 1967 .

[50]  H. Takiishi,et al.  Properties of nanoparticles prepared from NdFeB-based compound for magnetic hyperthermia application , 2012, Nanotechnology.

[51]  David M. Bierman,et al.  A nanophotonic solar thermophotovoltaic device. , 2014, Nature nanotechnology.

[52]  A. Tres,et al.  Induced cell toxicity originates dendritic cell death following magnetic hyperthermia treatment , 2013, Cell Death and Disease.

[53]  Carlos Rinaldi,et al.  EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. , 2011, ACS nano.

[54]  C. Loubat,et al.  Preventing corona effects: multiphosphonic acid poly(ethylene glycol) copolymers for stable stealth iron oxide nanoparticles. , 2014, Biomacromolecules.

[55]  V. Cabuil,et al.  Microfluidic Synthesis of Iron Oxide and Oxyhydroxide Nanoparticles , 2010 .

[56]  Gabriel T. Landi,et al.  On the energy conversion efficiency in magnetic hyperthermia applications: A new perspective to analyze the departure from the linear regime , 2012 .

[57]  T. Giorgio,et al.  A mathematical model of superparamagnetic iron oxide nanoparticle magnetic behavior to guide the design of novel nanomaterials , 2012, Journal of Nanoparticle Research.

[58]  M. Muhammed,et al.  Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy. , 2008, Journal of the American Chemical Society.

[59]  J. Overgaard,et al.  A century with hyperthermic oncology in Scandinavia. , 1995, Acta oncologica.

[60]  H. Mamiya Recent Advances in Understanding Magnetic Nanoparticles in AC Magnetic Fields and Optimal Design for Targeted Hyperthermia , 2013 .

[61]  M. Devaud,et al.  How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity. , 2012, Contrast media & molecular imaging.

[62]  R Ivkov,et al.  Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia , 2009, Nanotechnology.

[63]  Ilaria Rivolta,et al.  The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? , 2012, Nanotechnology, science and applications.

[64]  L. Lacroix,et al.  A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles. , 2008, The Review of scientific instruments.

[65]  Takashi Nakagawa,et al.  Suitability of commercial colloids for magnetic hyperthermia , 2009 .

[66]  Atle Bjørnerud,et al.  Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging , 2004, Cell and Tissue Research.

[67]  N. Usov,et al.  The influence of a demagnetizing field on hysteresis losses in a dense assembly of superparamagnetic nanoparticles , 2012 .

[68]  V. Cabuil,et al.  Hydrothermal synthesis of large maghemite nanoparticles: influence of the pH on the particle size , 2009 .

[69]  C. Muthamizhchelvan,et al.  Synthesis of Fe3O4 nanoflowers by one pot surfactant assisted hydrothermal method and its properties , 2012 .

[70]  S. Choi,et al.  Multiple-interaction ligands inspired by mussel adhesive protein: synthesis of highly stable and biocompatible nanoparticles. , 2011, Angewandte Chemie.

[71]  D. Baldomir,et al.  Adjustable Hyperthermia Response of Self‐Assembled Ferromagnetic Fe‐MgO Core–Shell Nanoparticles by Tuning Dipole–Dipole Interactions , 2012 .

[72]  J. Collantes,et al.  A multifrequency eletromagnetic applicator with an integrated AC magnetometer for magnetic hyperthermia experiments , 2014 .

[73]  Q. Pankhurst,et al.  High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. , 2015, Nanoscale.

[74]  A. Mediano,et al.  New insights into the heating mechanisms and self-regulating abilities of manganite perovskite nanoparticles suitable for magnetic fluid hyperthermia. , 2012, Nanoscale.

[75]  Subhash C. Mishra,et al.  Conventional and newly developed bioheat transport models in vascularized tissues: A review , 2013 .

[76]  V. Cabuil,et al.  Ferrofluids from prism-like nanoparticles , 2005 .

[77]  F. Guyot,et al.  Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: A review , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[78]  Kenneth R. Holmes,et al.  MICROVASCULAR CONTRIBUTIONS IN TISSUE HEAT TRANSFER , 1980, Annals of the New York Academy of Sciences.

[79]  V. Cabuil,et al.  Iron Oxide Monocrystalline Nanoflowers for Highly Efficient Magnetic Hyperthermia , 2012 .

[80]  Smit,et al.  What makes a polar liquid a liquid? , 1993, Physical Review Letters.

[81]  Ingrid Hilger,et al.  Magnetic multicore nanoparticles for hyperthermia—influence of particle immobilization in tumour tissue on magnetic properties , 2011, Nanotechnology.

[82]  F. Gendron,et al.  Long term in vivo biotransformation of iron oxide nanoparticles. , 2011, Biomaterials.

[83]  M. Toprak,et al.  Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T(2) contrast agent with tunable proton relaxivities. , 2012, Contrast media & molecular imaging.

[84]  S. Odenbach,et al.  Investigation of heat distribution during magnetic heating treatment using a polyurethane–ferrofluid phantom-model , 2014 .

[85]  Hakho Lee,et al.  Magnetic nanoparticle biosensors. , 2010, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[86]  J. Bacri,et al.  Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. , 2007, Journal of the American Chemical Society.

[87]  G. Salas,et al.  BSA-coated magnetic nanoparticles for improved therapeutic properties. , 2015, Journal of materials chemistry. B.

[88]  C. Serna,et al.  Continuous production of γ-Fe2O3 ultrafine powders by laser pyrolysis , 1998 .

[89]  Sara Linse,et al.  Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. , 2007, Angewandte Chemie.

[90]  H. Arkin,et al.  Recent developments in modeling heat transfer in blood perfused tissues , 1994, IEEE Transactions on Biomedical Engineering.

[91]  Olivier Sandre,et al.  Harmonic phases of the nanoparticle magnetization: An intrinsic temperature probe , 2015 .

[92]  Hoik Lee,et al.  Colloidal stability of iron oxide nanoparticles with multivalent polymer surfactants. , 2015, Journal of colloid and interface science.

[93]  P. Couvreur,et al.  Nanocarriers’ entry into the cell: relevance to drug delivery , 2009, Cellular and Molecular Life Sciences.

[94]  C. O'connor,et al.  Synthesis of Variable-Sized Nanocrystals of Fe3O4 with High Surface Reactivity , 2004 .

[95]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[96]  B. Mehdaoui,et al.  Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results , 2013, 1301.5590.

[97]  Ralph Weissleder,et al.  Peroxidase Substrate Nanosensors for MR Imaging , 2004 .

[98]  A. Golneshan,et al.  Numerical Study of Temperature Distribution in a Spherical Tissue in Magnetic Fluid Hyperthermia Using Lattice Boltzmann Method , 2011, IEEE Transactions on NanoBioscience.

[99]  V. Cabuil,et al.  Ionic magnetic fluid based on cobalt ferrite nanoparticles: Influence of hydrothermal treatment on the nanoparticle size , 2011 .

[100]  R. Miranda,et al.  Modulation of Magnetic Heating via Dipolar Magnetic Interactions in Monodisperse and Crystalline Iron Oxide Nanoparticles , 2014 .

[101]  W Schmidt,et al.  A Novel Magnetic Field Device for Inducing Hyperthermia Using Magnetic Nanoparticles , 2013, Biomedizinische Technik. Biomedical engineering.

[102]  R. Muller,et al.  Ferrofluids of magnetic multicore nanoparticles for biomedical applications , 2009 .

[103]  Pedro J. J. Alvarez,et al.  Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. , 2010, ACS nano.

[104]  Olivier Sandre,et al.  Templated Synthesis of Magnetic Nanoparticles through the Self-Assembly of Polymers and Surfactants , 2014, Nanomaterials.

[105]  V. John,et al.  Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[106]  R. Gilchrist,et al.  Selective Inductive Heating of Lymph Nodes , 1957, Annals of surgery.

[107]  Thierry Epicier,et al.  Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles. , 2013, Biomaterials.

[108]  Y. Raikher,et al.  Physical aspects of magnetic hyperthermia: Low-frequency ac field absorption in a magnetic colloid , 2014 .

[109]  John B Weaver,et al.  Magnetic nanoparticle temperature estimation. , 2009, Medical physics.

[110]  S. Palaniandy,et al.  Preparation of iron oxide nanoparticles by mechanical milling , 2011 .

[111]  J. Cheon,et al.  Theranostic magnetic nanoparticles. , 2011, Accounts of chemical research.

[112]  B. Evans,et al.  Heating efficiency in magnetic nanoparticle hyperthermia , 2014 .

[113]  S. Salon,et al.  On the measurement technique for specific absorption rate of nanoparticles in an alternating electromagnetic field , 2012 .

[114]  P. Wust,et al.  Solid materials with high dielectric constants for hyperthermia applications. , 1998, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[115]  Kai Yue,et al.  Numerical simulation of effect of vessel bifurcation on heat transfer in the magnetic fluid hyperthermia , 2014 .

[116]  Shujuan Huang,et al.  Potential Sources of Errors in Measuring and Evaluating the Specific Loss Power of Magnetic Nanoparticles in an Alternating Magnetic Field , 2013, IEEE Transactions on Magnetics.

[117]  A. Mediano,et al.  Adiabatic magnetothermia makes possible the study of the temperature dependence of the heat dissipated by magnetic nanoparticles under alternating magnetic fields , 2011 .

[118]  M. Mahmoudi,et al.  Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles. , 2013, Nanoscale.

[119]  P. Eklund,et al.  Nanocrystalline α–Fe, Fe_3C, and Fe_7C_3 produced by CO_2 laser pyrolysis , 1993 .

[120]  C. Ulhaq,et al.  Microstructural and Magnetic Investigations of Wüstite-Spinel Core-Shell Cubic-Shaped Nanoparticles , 2011 .

[121]  Zhen Yao,et al.  Modeling the Brownian relaxation of nanoparticle ferrofluids: Comparison with experiment , 2013, 2013 International Workshop on Magnetic Particle Imaging (IWMPI).

[122]  Maria Strømme,et al.  Novel readout method for molecular diagnostic assays based on optical measurements of magnetic nanobead dynamics. , 2015, Analytical chemistry.

[123]  Stephanie E. A. Gratton,et al.  The effect of particle design on cellular internalization pathways , 2008, Proceedings of the National Academy of Sciences.

[124]  Raimo Hartmann,et al.  Temperature: the "ignored" factor at the NanoBio interface. , 2013, ACS nano.

[125]  H. Mamiya,et al.  Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields , 2011, Scientific reports.

[126]  S. Komarneni,et al.  Hydrothermal preparation of ultrafine ferrites and their sintering , 1988 .

[127]  Sabino Veintemillas-Verdaguer,et al.  Surface and Internal Spin Canting in γ-Fe2O3 Nanoparticles , 1999 .

[128]  R Weissleder,et al.  First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging. , 1990, Radiology.

[129]  Olivier Sandre,et al.  Antibody‐Functionalized Magnetic Polymersomes: In vivo Targeting and Imaging of Bone Metastases using High Resolution MRI , 2013, Advanced healthcare materials.

[130]  Yu Zhang,et al.  Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field , 2004 .

[131]  William W. Yu,et al.  Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. , 2004, Chemical communications.

[132]  Haifeng Zhang,et al.  Lattice Boltzmann method for solving the bioheat equation , 2008, Physics in medicine and biology.

[133]  Kuo-Chi Liu,et al.  Estimation for the heating effect of magnetic nanoparticles in perfused tissues , 2009 .

[134]  C. K. Charny,et al.  Mathematical Models of Bioheat Transfer , 1992 .

[135]  J. Brent,et al.  Prevention of gastrointestinal iron absorption by chelation from an orally administered premixed deferoxamine/charcoal slurry. , 1997, Annals of emergency medicine.

[136]  Andris F. Bakuzis,et al.  Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia , 2013, Scientific Reports.

[137]  Philip M. Kelly,et al.  Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. , 2013, Nature nanotechnology.

[138]  P. Wust,et al.  The cellular and molecular basis of hyperthermia. , 2002, Critical reviews in oncology/hematology.

[139]  S. Weinbaum,et al.  A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. , 1985, Journal of biomechanical engineering.

[140]  M. Devaud,et al.  Modeling magnetic nanoparticle dipole-dipole interactions inside living cells , 2011 .

[141]  J B Weaver,et al.  Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times , 2014, Physics in medicine and biology.

[142]  P. Wust,et al.  Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme , 2010, Journal of Neuro-Oncology.

[143]  Arturo Mediano,et al.  Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles , 2010 .

[144]  Lutz Trahms,et al.  Quantification of the aggregation of magnetic nanoparticles with different polymeric coatings in cell culture medium , 2010 .

[145]  C. Serna,et al.  Large scale production of biocompatible magnetite nanocrystals with high saturation magnetization values through green aqueous synthesis. , 2013, Journal of materials chemistry. B.

[146]  L. Lartigue,et al.  Mastering the Shape and Composition of Dendronized Iron Oxide Nanoparticles To Tailor Magnetic Resonance Imaging and Hyperthermia , 2014 .

[147]  Joachim O. Rädler,et al.  Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals , 2004 .

[148]  S. Laurent,et al.  Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI. , 2015, Nanoscale.

[149]  J. Marco,et al.  Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit , 2008 .

[150]  D. Habault,et al.  Droplet Microfluidics to Prepare Magnetic Polymer Vesicles and to Confine the Heat in Magnetic Hyperthermia , 2012, IEEE Transactions on Magnetics.

[151]  Biodegradation mechanisms of iron oxide monocrystalline nanoflowers and tunable shield effect of gold coating. , 2014, Small.

[152]  Taeghwan Hyeon,et al.  Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. , 2001, Journal of the American Chemical Society.

[153]  Olivier Sandre,et al.  Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state , 2010, Nanotechnology.

[154]  L. Gutiérrez,et al.  Insight into serum protein interactions with functionalized magnetic nanoparticles in biological media. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[155]  Porto,et al.  Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles , 2000, Physical review letters.

[156]  Mauro Ferrari,et al.  Nanomedicine--challenge and perspectives. , 2009, Angewandte Chemie.

[157]  R. Ivkov Magnetic nanoparticle hyperthermia: A new frontier in biology and medicine? , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[158]  F. Lázaro,et al.  Prospects for magnetic nanoparticles in systemic administration: synthesis and quantitative detection. , 2014, Physical chemistry chemical physics : PCCP.

[159]  Sophie Neveu,et al.  A new spectrometric method, using a magneto-optical effect, to study magnetic liquids , 1995 .

[160]  G. Goglio,et al.  Manganite perovskite nanoparticles for self-controlled magnetic fluid hyperthermia: about the suitability of an aqueous combustion synthesis route , 2011 .

[161]  Morteza Mahmoudi,et al.  Protein Corona Composition of Superparamagnetic Iron Oxide Nanoparticles with Various Physico-Chemical Properties and Coatings , 2014, Scientific Reports.

[162]  Christopher J. Hogan,et al.  Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. , 2014, Technology.

[163]  D. F. Barber,et al.  Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[164]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[165]  R. Miranda,et al.  Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications , 2012 .

[166]  Hao Zeng,et al.  Size-controlled synthesis of magnetite nanoparticles. , 2002, Journal of the American Chemical Society.

[167]  M. Trlep,et al.  An experimental study of magnetic-field and temperature dependence on magnetic fluid’s heating power , 2013 .

[168]  M E Cano,et al.  An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements. , 2011, The Review of scientific instruments.

[169]  T. Ishigaki,et al.  Fabrication of iron oxide nanoparticles using laser ablation in liquids , 2013 .

[170]  K. Krishnan,et al.  Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems. , 2011, Journal of applied physics.

[171]  S. Dutz,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER , 2005 .

[172]  M. Niederberger,et al.  Simultaneous formation of ferrite nanocrystals and deposition of thin films via a microwave-assisted nonaqueous sol–gel process , 2011 .

[173]  T. R. Pisanic,et al.  Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. , 2010, Small.

[174]  Yuan Hu,et al.  Preparation of water-soluble magnetite nanocrystals through hydrothermal approach , 2007 .

[175]  V. Connord,et al.  Real-Time Analysis of Magnetic Hyperthermia Experiments on Living Cells under a Confocal Microscope. , 2015, Small.

[176]  R Weissleder,et al.  Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. , 2000, Radiology.

[177]  R. Massart,et al.  Preparation of aqueous magnetic liquids in alkaline and acidic media , 1981 .

[178]  Rudolf Hergt,et al.  Magnetic particle hyperthermia—a promising tumour therapy? , 2014, Nanotechnology.

[179]  Peter Schlag,et al.  Clinical use of the hyperthermia treatment planning system HyperPlan to predict effectiveness and toxicity. , 2003, International journal of radiation oncology, biology, physics.

[180]  Gustaaf Borghs,et al.  Silane Ligand Exchange to Make Hydrophobic Superparamagnetic Nanoparticles Water-Dispersible , 2007 .

[181]  M. Devaud,et al.  Nanomagnetism reveals the intracellular clustering of iron oxide nanoparticles in the organism. , 2011, Nanoscale.

[182]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[183]  Fernando Plazaola,et al.  A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia , 2014 .

[184]  O. Hovorka,et al.  Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles , 2014, Scientific Reports.

[185]  Junsheng Yu,et al.  Radiofrequency heating of nanomaterials for cancer treatment: Progress, controversies, and future development , 2015 .

[186]  C. O'connor,et al.  Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions. , 2002, Inorganic chemistry.

[187]  C. Rinaldi,et al.  Magnetic fluid hyperthermia: Advances, challenges, and opportunity , 2013, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[188]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[189]  Yong Wu,et al.  Dependence of Brownian and Néel relaxation times on magnetic field strength. , 2013, Medical physics.

[190]  D. F. Barber,et al.  Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. , 2011, Biomaterials.

[191]  A. Mediano,et al.  Adiabatic vs. non-adiabatic determination of specific absorption rate of ferrofluids , 2009 .

[192]  Andrea Prieto Astalan,et al.  Sensitive High Frequency AC Susceptometry in Magnetic Nanoparticle Applications , 2010 .

[193]  K. Dawson,et al.  Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[194]  Liberato Manna,et al.  Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. , 2012, ACS nano.

[195]  M. A. García,et al.  Correlating Magneto-Structural Properties to Hyperthermia Performance of Highly Monodisperse Iron Oxide Nanoparticles Prepared by a Seeded-Growth Route , 2011 .

[196]  É. Duguet,et al.  Magnetic nanoparticle design for medical diagnosis and therapy , 2004 .

[197]  I. Puri,et al.  Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion , 2011 .

[198]  Jinwoo Cheon,et al.  Exchange-coupled magnetic nanoparticles for efficient heat induction. , 2011, Nature nanotechnology.

[199]  J. Greneche,et al.  Hydrothermal synthesis of monodisperse magnetite nanoparticles , 2006 .

[200]  P. Palade,et al.  Stepped heating procedure for experimental SAR evaluation of ferrofluids , 2015, The European Physical Journal E.

[201]  R. Piñol,et al.  Joining time-resolved thermometry and magnetic-induced heating in a single nanoparticle unveils intriguing thermal properties. , 2015, ACS nano.

[202]  A. Hamler,et al.  Determination of the Heating Effect of Magnetic Fluid in Alternating Magnetic Field , 2010, IEEE Transactions on Magnetics.

[203]  John Waldron,et al.  The Langevin Equation , 2004 .

[204]  Rocío Costo,et al.  Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in γ-Fe2O3 Nanoparticles , 2012 .

[205]  Florence Gazeau,et al.  Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. , 2014, Biomaterials.

[206]  Ali Dabbagh,et al.  Tissue-Mimicking Gel Phantoms for Thermal Therapy Studies , 2014, Ultrasonic imaging.

[207]  R. Regmi,et al.  Temperature dependent dissipation in magnetic nanoparticles , 2014 .

[208]  P. Decuzzi,et al.  Design Maps for the Hyperthermic Treatment of Tumors with Superparamagnetic Nanoparticles , 2013, PloS one.