RK-Means Clustering: K-Means with Reliability

This paper presents an RK-means clustering algorithm which is developed for reliable data grouping by introducing a new reliability evaluation to the K-means clustering algorithm. The conventional K-means clustering algorithm has two shortfalls: 1) the clustering result will become unreliable if the assumed number of the clusters is incorrect; 2) during the update of a cluster center, all the data points belong to that cluster are used equally without considering how distant they are to the cluster center. In this paper, we introduce a new reliability evaluation to K-means clustering algorithm by considering the triangular relationship among each data point and its two nearest cluster centers. We applied the proposed algorithm to track objects in video sequence and confirmed its effectiveness and advantages.

[1]  A. Schneider Weighted possibilistic c-means clustering algorithms , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[2]  Jianbo Shi,et al.  Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[3]  Moshe Kam,et al.  A noise-resistant fuzzy c means algorithm for clustering , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[4]  J. Li,et al.  Multiresolution Adaptive K-means Algorithm for Segmentation of Brain MRI , 1995, ICSC.

[5]  Neil Genzlinger A. and Q , 2006 .

[6]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[7]  Pramod K. Singh Unsupervised Segmentation of Medical Images using DCT Coefficients , 2003, VIP.

[8]  F. Gibou A fast hybrid k-means level set algorithm for segmentation , 2005 .

[9]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[10]  Qian Chen,et al.  K-means Tracking with Variable Ellipse Model , 2005 .

[11]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[12]  Mary Anne L. Egan,et al.  Locating clusters in noisy data: a genetic fuzzy c-means clustering algorithm , 1998, 1998 Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.98TH8353).

[13]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[14]  James M. Keller,et al.  A new hybrid c-means clustering model , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[15]  W. Peizhuang Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .

[16]  Jacek M. Leski Generalized weighted conditional fuzzy clustering , 2003, IEEE Trans. Fuzzy Syst..

[17]  Jean-Michel Jolion,et al.  Robust Clustering with Applications in Computer Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  M. Pavan,et al.  A new graph-theoretic approach to clustering and segmentation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[19]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[20]  Jiang-She Zhang,et al.  Robust clustering by pruning outliers , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[21]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[22]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[23]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[24]  Jung-Hua Wang,et al.  A new robust clustering algorithm-density-weighted fuzzy c-means , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[25]  Ulrich Kressel,et al.  Tracking non-rigid, moving objects based on color cluster flow , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Rajesh N. Davé,et al.  Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..

[27]  Maurice K. Wong,et al.  Algorithm AS136: A k-means clustering algorithm. , 1979 .

[28]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[29]  Arnold W. M. Smeulders,et al.  Tracking Aspects of the Foreground against the Background , 2004, ECCV.

[30]  Amnon Shashua,et al.  A unifying approach to hard and probabilistic clustering , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.