RK-Means Clustering: K-Means with Reliability
暂无分享,去创建一个
Haiyuan Wu | Qian Chen | Toshikazu Wada | Chunsheng Hua | Qian Chen | Haiyuan Wu | T. Wada | C. Hua
[1] A. Schneider. Weighted possibilistic c-means clustering algorithms , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).
[2] Jianbo Shi,et al. Multiclass spectral clustering , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[3] Moshe Kam,et al. A noise-resistant fuzzy c means algorithm for clustering , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).
[4] J. Li,et al. Multiresolution Adaptive K-means Algorithm for Segmentation of Brain MRI , 1995, ICSC.
[5] Neil Genzlinger. A. and Q , 2006 .
[6] J. A. Hartigan,et al. A k-means clustering algorithm , 1979 .
[7] Pramod K. Singh. Unsupervised Segmentation of Medical Images using DCT Coefficients , 2003, VIP.
[8] F. Gibou. A fast hybrid k-means level set algorithm for segmentation , 2005 .
[9] James M. Keller,et al. The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..
[10] Qian Chen,et al. K-means Tracking with Variable Ellipse Model , 2005 .
[11] J. C. Dunn,et al. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .
[12] Mary Anne L. Egan,et al. Locating clusters in noisy data: a genetic fuzzy c-means clustering algorithm , 1998, 1998 Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.98TH8353).
[13] James M. Keller,et al. A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..
[14] James M. Keller,et al. A new hybrid c-means clustering model , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).
[15] W. Peizhuang. Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .
[16] Jacek M. Leski. Generalized weighted conditional fuzzy clustering , 2003, IEEE Trans. Fuzzy Syst..
[17] Jean-Michel Jolion,et al. Robust Clustering with Applications in Computer Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[18] M. Pavan,et al. A new graph-theoretic approach to clustering and segmentation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[19] James M. Keller,et al. A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.
[20] Jiang-She Zhang,et al. Robust clustering by pruning outliers , 2003, IEEE Trans. Syst. Man Cybern. Part B.
[21] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[22] Rajesh N. Davé,et al. Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..
[23] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[24] Jung-Hua Wang,et al. A new robust clustering algorithm-density-weighted fuzzy c-means , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).
[25] Ulrich Kressel,et al. Tracking non-rigid, moving objects based on color cluster flow , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[26] Rajesh N. Davé,et al. Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..
[27] Maurice K. Wong,et al. Algorithm AS136: A k-means clustering algorithm. , 1979 .
[28] Michael I. Jordan,et al. On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.
[29] Arnold W. M. Smeulders,et al. Tracking Aspects of the Foreground against the Background , 2004, ECCV.
[30] Amnon Shashua,et al. A unifying approach to hard and probabilistic clustering , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.