Measurements of peroxy radicals using chemical amplification-cavity ringdown spectroscopy.

The peroxy radical chemical amplification (PERCA) method is combined with cavity ringdown spectroscopy(CRDS) to detect peroxy radicals (HO2 and RO2). In PERCA, HO2 and RO2 are first converted to NO2 via reactions with NO, and the OH and RO coproducts are recycled back to HO2 in subsequent reactions with CO and O2; the chain reactions of HO2 are repeated and amplify the level of NO2. The amplified NO2 is then monitored by CRDS, a sensitive absorption technique. The PERCA-CRDS method is calibrated using a HO2 radical source (0.5-3 ppbv), which is generated by thermal decomposition of H2O2 vapor (permeated from 2% H2O2 solution through a porous Teflon tubing) up to 600 degrees C. Using a 2-m long 6.35-mm o.d. Teflon tubing as the flow reactor and 2.5 ppmv NO and 2.5-10% vol/vol CO, the PERCA amplification factor or chain length, Delta[NO2]/([HO2]+[RO2]), is determined to be 150 +/- 50 (90% confidence limit) in this study. The peroxy radical detection sensitivity by PERCA-CRDS is estimated to be approximately 10 pptv/60 s (3sigma). Ambient measurements of the peroxy radicals are carried out at Riverside, California in 2007 to demonstrate the PERCA-CRDS technique.