Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems

Nanomechanical resonators can now be realized that achieve fundamental resonance frequencies exceeding 1 GHz, with quality factors (Q) in the range 10^3<=Q<=10^5. The minuscule active masses of these devices, in conjunction with their high Qs, translate into unprecedented inertial mass sensitivities. This makes them natural candidates for a variety of mass sensing applications. Here we evaluate the ultimate mass sensitivity limits for nanomechanical resonators operating in vacuo that are imposed by a number of fundamental physical noise processes. Our analyses indicate that nanomechanical resonators offer immense potential for mass sensing—ultimately with resolution at the level of individual molecules.

[1]  M. Roukes,et al.  Nanoelectromechanical systems: Nanodevice motion at microwave frequencies , 2003, Nature.

[2]  Axel Scherer,et al.  Nanowire-Based Very-High-Frequency Electromechanical Resonator , 2003 .

[3]  K. Novotný World , 2014, World Statistics Pocketbook (Ser. V).

[4]  Alan Townshend,et al.  Applications of piezoelectric quartz crystal microbalances , 1987 .

[5]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[6]  Masahiro Hirata,et al.  Unified formula describing the impedance dependence of a quartz oscillator on gas pressure , 1987 .

[7]  D. Greywall,et al.  Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  J. Vig,et al.  Fundamental limits on the frequency stabilities of crystal oscillators , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  Michael L. Roukes,et al.  Balanced electronic detection of displacement in nanoelectromechanical systems , 2002 .

[10]  Andrew Cleland,et al.  External control of dissipation in a nanometer-scale radiofrequency mechanical resonator , 1999 .

[11]  J. Fluitman,et al.  Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry , 1992 .

[12]  Jay W. Grate,et al.  Acoustic Wave Sensors , 1996 .

[13]  M. Roukes Nanoelectromechanical systems face the future , 2001 .

[14]  W. Gerlach,et al.  Über die Messung der rotatorischen Brownschen Bewegung mit Hilfe einer Drehwage , 2005, Naturwissenschaften.

[15]  Germany,et al.  Mechanical mixing in nonlinear nanomechanical resonators , 2000 .

[16]  David C. Stone,et al.  Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization , 1997 .

[17]  J. Vig,et al.  Resonator surface contamination-a cause of frequency fluctuations? , 1988, Proceedings of the 42nd Annual Frequency Control Symposium, 1988..

[18]  C. V. Heer,et al.  Statistical mechanics, kinetic theory, and stochastic processes , 1972 .

[19]  Masayoshi Esashi,et al.  Mass sensing of adsorbed molecules in sub-picogram sample with ultrathin silicon resonator , 2003 .

[20]  E. A. Wachter,et al.  Detection of mercury vapor using resonating microcantilevers , 1995 .

[21]  Suresh S. Narine,et al.  Use of the quartz crystal microbalance to measure the mass of submonolayer deposits: Measuring the stoichiometry of surface oxides , 1998 .

[22]  V. Braginsky,et al.  Systems with Small Dissipation , 1986 .

[23]  Panos G. Datskos,et al.  Femtogram mass detection using photothermally actuated nanomechanical resonators , 2003 .

[24]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[25]  Andrew Zangwill Physics at Surfaces , 1988 .

[26]  H. Craighead,et al.  Mechanical resonant immunospecific biological detector , 2000 .

[27]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[28]  G. Sauerbrey,et al.  Use of quartz vibration for weighing thin films on a microbalance , 1959 .

[29]  Anja Boisen,et al.  Fabrication and characterization of nanoresonating devices for mass detection , 2000 .

[30]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[31]  M. Roukes,et al.  A nanometre-scale mechanical electrometer , 1998, Nature.

[32]  J. Vig,et al.  Modeling resonator frequency fluctuations induced by adsorbing and desorbing surface molecules , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[33]  M. Roukes,et al.  Noise processes in nanomechanical resonators , 2002 .

[34]  G. Uhlenbeck,et al.  A Problem in Brownian Motion , 1929 .

[35]  W. P. Robins,et al.  Phase Noise in Signal Sources , 1984 .