Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems
暂无分享,去创建一个
M. Roukes | K. Ekinci | Y. T. Yang | Ya-Tang Yang | Y. Yang
[1] M. Roukes,et al. Nanoelectromechanical systems: Nanodevice motion at microwave frequencies , 2003, Nature.
[2] Axel Scherer,et al. Nanowire-Based Very-High-Frequency Electromechanical Resonator , 2003 .
[3] K. Novotný. World , 2014, World Statistics Pocketbook (Ser. V).
[4] Alan Townshend,et al. Applications of piezoelectric quartz crystal microbalances , 1987 .
[5] Hemantha K. Wickramasinghe,et al. Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .
[6] Masahiro Hirata,et al. Unified formula describing the impedance dependence of a quartz oscillator on gas pressure , 1987 .
[7] D. Greywall,et al. Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[8] J. Vig,et al. Fundamental limits on the frequency stabilities of crystal oscillators , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[9] Michael L. Roukes,et al. Balanced electronic detection of displacement in nanoelectromechanical systems , 2002 .
[10] Andrew Cleland,et al. External control of dissipation in a nanometer-scale radiofrequency mechanical resonator , 1999 .
[11] J. Fluitman,et al. Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry , 1992 .
[12] Jay W. Grate,et al. Acoustic Wave Sensors , 1996 .
[13] M. Roukes. Nanoelectromechanical systems face the future , 2001 .
[14] W. Gerlach,et al. Über die Messung der rotatorischen Brownschen Bewegung mit Hilfe einer Drehwage , 2005, Naturwissenschaften.
[15] Germany,et al. Mechanical mixing in nonlinear nanomechanical resonators , 2000 .
[16] David C. Stone,et al. Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization , 1997 .
[17] J. Vig,et al. Resonator surface contamination-a cause of frequency fluctuations? , 1988, Proceedings of the 42nd Annual Frequency Control Symposium, 1988..
[18] C. V. Heer,et al. Statistical mechanics, kinetic theory, and stochastic processes , 1972 .
[19] Masayoshi Esashi,et al. Mass sensing of adsorbed molecules in sub-picogram sample with ultrathin silicon resonator , 2003 .
[20] E. A. Wachter,et al. Detection of mercury vapor using resonating microcantilevers , 1995 .
[21] Suresh S. Narine,et al. Use of the quartz crystal microbalance to measure the mass of submonolayer deposits: Measuring the stoichiometry of surface oxides , 1998 .
[22] V. Braginsky,et al. Systems with Small Dissipation , 1986 .
[23] Panos G. Datskos,et al. Femtogram mass detection using photothermally actuated nanomechanical resonators , 2003 .
[24] D. Rugar,et al. Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .
[25] Andrew Zangwill. Physics at Surfaces , 1988 .
[26] H. Craighead,et al. Mechanical resonant immunospecific biological detector , 2000 .
[27] G. Sauerbrey. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .
[28] G. Sauerbrey,et al. Use of quartz vibration for weighing thin films on a microbalance , 1959 .
[29] Anja Boisen,et al. Fabrication and characterization of nanoresonating devices for mass detection , 2000 .
[30] A. Cleland,et al. Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.
[31] M. Roukes,et al. A nanometre-scale mechanical electrometer , 1998, Nature.
[32] J. Vig,et al. Modeling resonator frequency fluctuations induced by adsorbing and desorbing surface molecules , 1990, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[33] M. Roukes,et al. Noise processes in nanomechanical resonators , 2002 .
[34] G. Uhlenbeck,et al. A Problem in Brownian Motion , 1929 .
[35] W. P. Robins,et al. Phase Noise in Signal Sources , 1984 .