Microwave-excited microplasma thruster with helium and hydrogen propellants
暂无分享,去创建一个
Koji Eriguchi | Yoshinori Takao | Kouichi Ono | K. Eriguchi | Y. Takao | K. Ono | Takeshi Takahashi | Takeshi Takahashi | Yugo Ichida | Y. Ichida
[1] S. Kovaleski,et al. Ferroelectric plasma thruster for microspacecraft propulsion , 2006 .
[2] Robert Osiander,et al. MEMS and Microstructures in Aerospace Applications , 2005 .
[3] Yoshinori Takao,et al. Microwave-sustained miniature plasmas for an ultra small thruster , 2006 .
[5] V. M. Donnelly,et al. Spatially resolved diagnostics of an atmospheric pressure direct current helium microplasma , 2005 .
[6] Martin Tajmar. Advanced Space Propulsion Systems , 2003 .
[7] Y. Sakai. Database in low temperature plasma modeling , 2002 .
[8] H. Ootera,et al. Large-diameter microwave plasma source excited by azimuthally symmetric surface waves , 2000 .
[9] W. Steiger,et al. Indium Field Emission Electric Propulsion Microthruster Experimental Characterization , 2004 .
[10] Naoji Yamamoto,et al. Effects of Magnetic Field Configuration on Thrust Performance in A Miniature Microwave Discharge Ion Thruster , 2007 .
[11] H. Seifert,et al. Rocket Propulsion Elements , 1963 .
[12] Andrew D. Ketsdever,et al. Micropropulsion for small spacecraft , 2000 .
[13] Ronald W. Humble,et al. Space Propulsion Analysis and Design , 1995 .
[14] Koji Eriguchi,et al. A miniature electrothermal thruster using microwave-excited microplasmas: Thrust measurement and its comparison with numerical analysis , 2007 .
[15] M. Elford,et al. The Momentum Transfer Cross Section for Electrons in Helium Derived from Drift Velocities at 77°K , 1970 .
[16] Xiaohui Yuan,et al. Computational study of capacitively coupled high-pressure glow discharges in helium , 2003 .
[17] M. Cappelli,et al. Low-power magnetized microdischarge ion source , 2006 .
[18] Koji Eriguchi,et al. Microwave-excited microplasma thruster: a numerical and experimental study of the plasma generation and micronozzle flow , 2008 .
[19] Henry Helvajian,et al. Microengineering aerospace systems , 1999 .
[20] A. Lichtenberg,et al. Principles of Plasma Discharges and Materials Processing , 1994 .
[21] L. Raja,et al. Two-dimensional simulation of a direct-current microhollow cathode discharge , 2005 .
[22] Michio Nishida,et al. Numerical Analysis of a Radiation-Cooled Micro Arcjet Thruster , 2006 .
[23] M. Kushner,et al. Excitation mechanisms and gain modeling of the high‐pressure atomic Ar laser in He/Ar mixtures , 1994 .
[24] Koji Eriguchi,et al. Microplasma thruster for ultra-small satellites: Plasma chemical and aerodynamical aspects , 2008 .
[25] Ikkoh Funaki,et al. Laser absorption velocimetry of plasma flow in two-dimensional magnetoplasmadynamic arcjet , 2006 .
[26] Monika Auweter-Kurtz,et al. High-Power Hydrogen Arcjet Thrusters , 1998 .
[27] M. Cappelli,et al. Experimental Characterization of a Micro-Hall Thruster , 2007 .
[28] Koji Eriguchi,et al. Plasma Diagnostics and Thrust Performance Analysis of a Microwave-Excited Microplasma Thruster , 2006 .
[29] William L. Barr,et al. Spectral Line Broadening by Plasmas , 1975, IEEE Transactions on Plasma Science.
[30] Kouichi Ono,et al. Fine structure of the electromagnetic fields formed by backward surface waves in an azimuthally symmetric surface wave-excited plasma source , 2003 .
[31] S. Manson,et al. Cross sections for excitation and ionization in e-He(21,3S) collisions , 1977 .
[32] T. Ezaki,et al. Measurements of electron density and temperature in a miniature microwave discharge ion thruster using laser Thomson scattering technique , 2010 .
[33] Plasma acceleration from radio-frequency discharge in dielectric capillary , 2006 .
[34] K. Ono,et al. New-type microwave plasma source excited by azimuthally symmetric surface waves with magnetic multicusp fields , 1998 .
[35] Yoshinori Takao,et al. A miniature electrothermal thruster using microwave-excited plasmas: a numerical design consideration , 2006 .
[36] G. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .
[37] R. Cardoso,et al. Collisional–radiative modelling of a helium microwave plasma in a resonant cavity , 2007 .
[38] Jochen Schein,et al. Inductive energy storage driven vacuum arc thruster , 2002 .
[39] A. Roshko,et al. Elements of Gas Dynamics , 1957 .
[40] S. Kovaleski,et al. Thrust Measurements of the Ferroelectric Plasma Thruster , 2008, IEEE Transactions on Plasma Science.
[41] M. Flannery,et al. Cross sections for ionization of metastable rare-gas atoms (Ne*, Ar*, Kr*, Xe*) and of metastable N/sub 2/*,CO* molecules by electron impact. [6 to 250 eV, Born and binary encounter approximations] , 1977 .
[42] H. Kuninaka,et al. Miniature Microwave Discharge Ion Thruster Driven by 1 Watt Microwave Power , 2010 .
[43] Michael Keidar,et al. Plasma generation and plume expansion for a transmission-mode microlaser ablation plasma thruster , 2004 .
[44] Trevor Moeller,et al. MACH2 simulations of a micro laser ablation plasma thruster , 2007 .
[45] A. Lichtenberg,et al. Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .
[46] A. Jameson,et al. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations , 1988 .
[47] Naoji Yamamoto,et al. Development of small microwave discharge ion thruster , 2006 .
[48] Masayuki Mukai,et al. Total impulse improvement of coaxial pulsed plasma thruster for small satellite , 2008 .
[49] Koji Eriguchi,et al. Numerical and experimental study of microwave-excited microplasma and micronozzle flow for a microplasma thruster , 2009 .
[50] M. Cappelli,et al. Arcjet Plasma Neutralization of Hall Thrusters, Part 1: Hybrid Thruster Mission Analysis , 2004 .
[51] R. Bocanegra,et al. Water-based compound Taylor cones held in vacuum: Feasibility and application to colloidal propulsion , 2006 .