Microwave-excited microplasma thruster with helium and hydrogen propellants

Microplasma thruster of electrothermal type has been investigated with feed or propellant gases of He and H2. The thruster consisted of an azimuthally symmetric microwave-excited microplasma source 1.5 mm in diameter and 10 mm long with a rod antenna on axis, and a converging-diverging micronozzle 1 mm long with a throat 0.2 mm in diameter. Surface wave-excited plasmas were established by 4.0-GHz microwaves at powers of ≤ 6 W, with the source pressure in the range 0.5–12 kPa at flow rates of 2–70 sccm. The microplasma generation, micronozzle flow, and thrust performance with He were numerically analyzed by using a two-dimensional fluid model, coupled with an electromagnetic model for microwaves interacting with plasmas in the source region. In experiments, the plasma electron density and gas temperature in the microplasma source were measured at around the top of the microwave antenna, or just upstream of the micronozzle inlet, by optical emission spectroscopy with a small amount of additive gases of H2 a...

[1]  S. Kovaleski,et al.  Ferroelectric plasma thruster for microspacecraft propulsion , 2006 .

[2]  Robert Osiander,et al.  MEMS and Microstructures in Aerospace Applications , 2005 .

[3]  Yoshinori Takao,et al.  Microwave-sustained miniature plasmas for an ultra small thruster , 2006 .

[4]  Fast surface temperature measurement of Teflon propellant-in-pulsed ablative discharges using HgCdTe photovoltaic cells , 2006 .

[5]  V. M. Donnelly,et al.  Spatially resolved diagnostics of an atmospheric pressure direct current helium microplasma , 2005 .

[6]  Martin Tajmar Advanced Space Propulsion Systems , 2003 .

[7]  Y. Sakai Database in low temperature plasma modeling , 2002 .

[8]  H. Ootera,et al.  Large-diameter microwave plasma source excited by azimuthally symmetric surface waves , 2000 .

[9]  W. Steiger,et al.  Indium Field Emission Electric Propulsion Microthruster Experimental Characterization , 2004 .

[10]  Naoji Yamamoto,et al.  Effects of Magnetic Field Configuration on Thrust Performance in A Miniature Microwave Discharge Ion Thruster , 2007 .

[11]  H. Seifert,et al.  Rocket Propulsion Elements , 1963 .

[12]  Andrew D. Ketsdever,et al.  Micropropulsion for small spacecraft , 2000 .

[13]  Ronald W. Humble,et al.  Space Propulsion Analysis and Design , 1995 .

[14]  Koji Eriguchi,et al.  A miniature electrothermal thruster using microwave-excited microplasmas: Thrust measurement and its comparison with numerical analysis , 2007 .

[15]  M. Elford,et al.  The Momentum Transfer Cross Section for Electrons in Helium Derived from Drift Velocities at 77°K , 1970 .

[16]  Xiaohui Yuan,et al.  Computational study of capacitively coupled high-pressure glow discharges in helium , 2003 .

[17]  M. Cappelli,et al.  Low-power magnetized microdischarge ion source , 2006 .

[18]  Koji Eriguchi,et al.  Microwave-excited microplasma thruster: a numerical and experimental study of the plasma generation and micronozzle flow , 2008 .

[19]  Henry Helvajian,et al.  Microengineering aerospace systems , 1999 .

[20]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[21]  L. Raja,et al.  Two-dimensional simulation of a direct-current microhollow cathode discharge , 2005 .

[22]  Michio Nishida,et al.  Numerical Analysis of a Radiation-Cooled Micro Arcjet Thruster , 2006 .

[23]  M. Kushner,et al.  Excitation mechanisms and gain modeling of the high‐pressure atomic Ar laser in He/Ar mixtures , 1994 .

[24]  Koji Eriguchi,et al.  Microplasma thruster for ultra-small satellites: Plasma chemical and aerodynamical aspects , 2008 .

[25]  Ikkoh Funaki,et al.  Laser absorption velocimetry of plasma flow in two-dimensional magnetoplasmadynamic arcjet , 2006 .

[26]  Monika Auweter-Kurtz,et al.  High-Power Hydrogen Arcjet Thrusters , 1998 .

[27]  M. Cappelli,et al.  Experimental Characterization of a Micro-Hall Thruster , 2007 .

[28]  Koji Eriguchi,et al.  Plasma Diagnostics and Thrust Performance Analysis of a Microwave-Excited Microplasma Thruster , 2006 .

[29]  William L. Barr,et al.  Spectral Line Broadening by Plasmas , 1975, IEEE Transactions on Plasma Science.

[30]  Kouichi Ono,et al.  Fine structure of the electromagnetic fields formed by backward surface waves in an azimuthally symmetric surface wave-excited plasma source , 2003 .

[31]  S. Manson,et al.  Cross sections for excitation and ionization in e-He(21,3S) collisions , 1977 .

[32]  T. Ezaki,et al.  Measurements of electron density and temperature in a miniature microwave discharge ion thruster using laser Thomson scattering technique , 2010 .

[33]  Plasma acceleration from radio-frequency discharge in dielectric capillary , 2006 .

[34]  K. Ono,et al.  New-type microwave plasma source excited by azimuthally symmetric surface waves with magnetic multicusp fields , 1998 .

[35]  Yoshinori Takao,et al.  A miniature electrothermal thruster using microwave-excited plasmas: a numerical design consideration , 2006 .

[36]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[37]  R. Cardoso,et al.  Collisional–radiative modelling of a helium microwave plasma in a resonant cavity , 2007 .

[38]  Jochen Schein,et al.  Inductive energy storage driven vacuum arc thruster , 2002 .

[39]  A. Roshko,et al.  Elements of Gas Dynamics , 1957 .

[40]  S. Kovaleski,et al.  Thrust Measurements of the Ferroelectric Plasma Thruster , 2008, IEEE Transactions on Plasma Science.

[41]  M. Flannery,et al.  Cross sections for ionization of metastable rare-gas atoms (Ne*, Ar*, Kr*, Xe*) and of metastable N/sub 2/*,CO* molecules by electron impact. [6 to 250 eV, Born and binary encounter approximations] , 1977 .

[42]  H. Kuninaka,et al.  Miniature Microwave Discharge Ion Thruster Driven by 1 Watt Microwave Power , 2010 .

[43]  Michael Keidar,et al.  Plasma generation and plume expansion for a transmission-mode microlaser ablation plasma thruster , 2004 .

[44]  Trevor Moeller,et al.  MACH2 simulations of a micro laser ablation plasma thruster , 2007 .

[45]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing: Lieberman/Plasma 2e , 2005 .

[46]  A. Jameson,et al.  Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations , 1988 .

[47]  Naoji Yamamoto,et al.  Development of small microwave discharge ion thruster , 2006 .

[48]  Masayuki Mukai,et al.  Total impulse improvement of coaxial pulsed plasma thruster for small satellite , 2008 .

[49]  Koji Eriguchi,et al.  Numerical and experimental study of microwave-excited microplasma and micronozzle flow for a microplasma thruster , 2009 .

[50]  M. Cappelli,et al.  Arcjet Plasma Neutralization of Hall Thrusters, Part 1: Hybrid Thruster Mission Analysis , 2004 .

[51]  R. Bocanegra,et al.  Water-based compound Taylor cones held in vacuum: Feasibility and application to colloidal propulsion , 2006 .