Optimization Strategies for the CRISPR-Cas9 Genome-Editing System.

The CRISPR-Cas9 system uncovered in bacteria has emerged as a powerful genome-editing technology in eukaryotic cells. It consists of two components-a single guide RNA (sgRNA) that directs the Cas9 endonuclease to a complementary DNA target site. Efficient targeting of individual genes requires highly active sgRNAs. Recent efforts have made significant progress in understanding the sequence features that increase sgRNA activity. In this introduction, we highlight advancements in the field of CRISPR-Cas9 targeting and discuss our web tool CRISPRscan, which predicts the targeting activity of sgRNAs and improves the efficiency of the CRISPR-Cas9 system for in vivo genome engineering.

[1]  ジョン,ジェー.キース,et al.  Engineered CRISPR-Cas9 nucleases with altered PAM specificity , 2016 .

[2]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[3]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[4]  Tessa G. Montague,et al.  Efficient Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion and Large-Scale Assessment of Single-Guide RNAs , 2014, PloS one.

[5]  J. Keith Joung,et al.  Improving CRISPR-Cas nuclease specificity using truncated guide RNAs , 2014, Nature Biotechnology.

[6]  Clifford A. Meyer,et al.  Sequence determinants of improved CRISPR sgRNA design , 2015, Genome research.

[7]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[8]  G. Church,et al.  Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach , 2015, Nature Methods.

[9]  Daesik Kim,et al.  Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins , 2014, Genome research.

[10]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[11]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[12]  Charles E. Vejnar,et al.  Optimized CRISPR-Cas9 System for Genome Editing in Zebrafish. , 2016, Cold Spring Harbor protocols.

[13]  Charles E. Vejnar,et al.  CRISPRscan: designing highly efficient sgRNAs for CRISPR/Cas9 targeting in vivo , 2015, Nature Methods.

[14]  B. Meyer,et al.  Dramatic Enhancement of Genome Editing by CRISPR/Cas9 Through Improved Guide RNA Design , 2015, Genetics.

[15]  처치 죠지엠.,et al.  Orthogonal cas9 proteins for rna-guided gene regulation and editing , 2014 .

[16]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[17]  Jeffry D. Sander,et al.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.

[18]  George M. Church,et al.  Heritable genome editing in C. elegans via a CRISPR-Cas9 system , 2013, Nature Methods.

[19]  Andrew R. Bassett,et al.  CRISPR/Cas9 and genome editing in Drosophila. , 2014, Journal of genetics and genomics = Yi chuan xue bao.

[20]  Nicholas E. Propson,et al.  Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis , 2013, Proceedings of the National Academy of Sciences.

[21]  David A. Scott,et al.  In vivo genome editing using Staphylococcus aureus Cas9 , 2015, Nature.

[22]  Israel Steinfeld,et al.  Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells , 2015, Nature Biotechnology.

[23]  David A. Scott,et al.  Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells , 2014, Nature Biotechnology.

[24]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.