Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives

In the last decade the use of field-effect-based devices has become a basic structural element in a new generation of biosensors that allow label-free DNA analysis. In particular, ion sensitive field effect transistors (FET) are the basis for the development of radical new approaches for the specific detection and characterization of DNA due to FETs’ greater signal-to-noise ratio, fast measurement capabilities, and possibility to be included in portable instrumentation. Reliable molecular characterization of DNA and/or RNA is vital for disease diagnostics and to follow up alterations in gene expression profiles. FET biosensors may become a relevant tool for molecular diagnostics and at point-of-care. The development of these devices and strategies should be carefully designed, as biomolecular recognition and detection events must occur within the Debye length. This limitation is sometimes considered to be fundamental for FET devices and considerable efforts have been made to develop better architectures. Herein we review the use of field effect sensors for nucleic acid detection strategies—from production and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics lab.

[1]  Cheng-Chung Lee,et al.  Optical properties and deposition rate of sputtered Ta2O5 films deposited by ion-beam oxidation , 2005 .

[2]  Jang-Kyoo Shin,et al.  Field Effect Transistor-based Bimolecular Sensor Employing a Pt Reference Electrode for the Detection of Deoxyribonucleic Acid Sequence , 2004 .

[3]  Chel-Jong Choi,et al.  Structural and electrical properties of radio frequency magnetron sputtered tantalum oxide films: Influence of post-deposition annealing , 2010 .

[4]  J. Sninsky,et al.  Recent advances in the polymerase chain reaction , 1991, Science.

[5]  S. Ingebrandt,et al.  Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors. , 2007, Biosensors & bioelectronics.

[6]  Pedro Estrela,et al.  Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. , 2008, Biosensors & bioelectronics.

[7]  Andreas Offenhäusser,et al.  Surface activation of thin silicon oxides by wet cleaning and silanization , 2006 .

[8]  Rory Stine,et al.  Real‐Time DNA Detection Using Reduced Graphene Oxide Field Effect Transistors , 2010, Advanced materials.

[9]  V Chu,et al.  Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors. , 2008, Biosensors & bioelectronics.

[10]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[11]  F. Battaglini,et al.  Disposable Gold Electrode Array for Simultaneous Electrochemical Studies , 2008 .

[12]  Hiroshi Kawarada,et al.  pH-sensitive diamond field-effect transistors (FETs) with directly aminated channel surface. , 2006, Analytica chimica acta.

[13]  D. Segal,et al.  Direct detection of double-stranded DNA: Molecular methods and applications for DNA diagnostics. , 2006, Molecular bioSystems.

[14]  A. Paskaleva,et al.  Leakage currents and conduction mechanisms of Ta2O5 layers on Si obtained by RF sputtering , 2000 .

[15]  Zhiyong Zhang,et al.  Ultrasensitive label-free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor. , 2014, ACS nano.

[16]  Francine Kivlehan,et al.  Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids. , 2011, The Analyst.

[17]  Guo-Jun Zhang,et al.  Silicon nanowire biosensor and its applications in disease diagnostics: a review. , 2012, Analytica chimica acta.

[18]  C. Chu,et al.  Label-free detection of DNA using novel organic-based electrolyte-insulator-semiconductor. , 2010, Biosensors & bioelectronics.

[19]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[20]  Vivek Subramanian,et al.  Label-free low-cost disposable DNA hybridization detection systems using organic TFTs , 2007 .

[21]  Bernard P. Puc,et al.  An integrated semiconductor device enabling non-optical genome sequencing , 2011, Nature.

[22]  Yuji Miyahara,et al.  Immobilization of oligonucleotide probes on Si3N4 surface and its application to genetic field effect transistor , 2004 .

[23]  Vivek Subramanian,et al.  DNA detection using organic thin film transistors: optimization of DNA immobilization and sensor sensitivity. , 2009, Biosensors & bioelectronics.

[24]  Pedro Barquinha,et al.  Plastic Compatible Sputtered ${\hbox{Ta}}_{2}{\hbox{O}}_{5}$ Sensitive Layer for Oxide Semiconductor TFT Sensors , 2013, Journal of Display Technology.

[25]  F. Uslu,et al.  Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. , 2004, Biosensors & bioelectronics.

[26]  Sang Kyu Kim,et al.  Ion-Sensitive Field-Effect Transistor for Biological Sensing , 2009, Sensors.

[27]  L. Raffo,et al.  A CMOS, fully integrated sensor for electronic detection of DNA hybridization , 2006, IEEE Electron Device Letters.

[28]  R. Abramson,et al.  Nucleic acid amplification technologies. , 1993, Current opinion in biotechnology.

[29]  Makoto Ishida,et al.  Fabrication and Characteristics of a Field Effect Transistor-Type Charge Sensor for Detecting Deoxyribonucleic Acid Sequence , 2003 .

[30]  Elvira Fortunato,et al.  Real-time monitoring of PCR amplification of proto-oncogene c-MYC using a Ta₂O₅ electrolyte-insulator-semiconductor sensor. , 2011, Biosensors & bioelectronics.

[31]  Cecilia Jiménez-Jorquera,et al.  ISFET Based Microsensors for Environmental Monitoring , 2009, Sensors.

[32]  J. Eijkel,et al.  A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters , 1995 .

[33]  W. R. McKinnon,et al.  Sensitivity of field-effect biosensors to charge, pH, and ion concentration in a membrane model , 2008 .

[34]  Zhaohui Zhong,et al.  Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor. , 2012, Nano letters.

[35]  N. Jaffrezic‐Renault,et al.  Enzyme biosensors based on ion-selective field-effect transistors. , 2006, Analytica chimica acta.

[36]  Chih-Cheng Chou,et al.  Preparation and optical properties of Ta2O5-x thin films , 2008 .

[37]  Juan F Medrano,et al.  Real-time PCR for mRNA quantitation. , 2005, BioTechniques.

[38]  Elvira Fortunato,et al.  Transparent Electronics: From materials to devices , 2012 .

[39]  Elvira Fortunato,et al.  Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification. , 2014, Biosensors & bioelectronics.

[40]  Sang Heup Moon,et al.  Atomic layer deposition of an HfO2 thin film using Hf(O-iPr)4 , 2009 .

[41]  Xuema Li,et al.  Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires , 2004 .

[42]  C. Toumazou,et al.  Simultaneous DNA amplification and detection using a pH-sensing semiconductor system , 2013, Nature Methods.

[43]  Zhenan Bao,et al.  In Situ, Label‐Free DNA Detection Using Organic Transistor Sensors , 2010, Advanced materials.

[44]  D. E. Yates,et al.  Site-binding model of the electrical double layer at the oxide/water interface , 1974 .

[45]  N Balasubramanian,et al.  DNA sensing by silicon nanowire: charge layer distance dependence. , 2008, Nano letters.

[46]  Pedro Barquinha,et al.  Towards environmental friendly solution-based ZTO/AlOx TFTs , 2015 .

[47]  N. P. Barradas,et al.  Processing and characterisation of sol–gel deposited Ta2O5 and TiO2–Ta2O5 dielectric thin films , 1999 .

[48]  Omowunmi A Sadik,et al.  Status of biomolecular recognition using electrochemical techniques. , 2009, Biosensors & bioelectronics.

[49]  E Zanoni,et al.  A fully electronic sensor for the measurement of cDNA hybridization kinetics. , 2007, Biosensors & bioelectronics.

[50]  Sunil Purushothaman,et al.  Protons and single nucleotide polymorphism detection: A simple use for the Ion Sensitive Field Effect Transistor , 2006 .

[51]  T. Dimitrova,et al.  Interface and oxide properties of rf sputtered Ta2O5- Si structures , 1998 .

[52]  V. Subramanian,et al.  DNA hybridization detection with organic thin film transistors: toward fast and disposable DNA microarray chips. , 2007, Biosensors & bioelectronics.

[53]  P. Sorger,et al.  Electronic detection of DNA by its intrinsic molecular charge , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Michael J. Schöning,et al.  Label-free detection of charged macromolecules by using a field-effect-based sensor platform: Experiments and possible mechanisms of signal generation , 2007 .

[55]  Danick Briand,et al.  Metallo-organic low-pressure chemical vapor deposition of Ta2O5 using TaC12H30O5N as precursor for batch fabrication of microsystems , 2005 .

[56]  G Zeck,et al.  Spatially resolved electronic detection of biopolymers. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Pengfei Dai,et al.  Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. , 2012, Nano letters.

[58]  Orfeo Sbaizero,et al.  Metallorganic chemical vapor deposition of Ta2O5 films , 2003 .

[59]  E. Tu,et al.  Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Feng Yan,et al.  Label-free DNA sensor based on organic thin film transistors. , 2009, Biosensors & bioelectronics.

[61]  Ajay Agarwal,et al.  Label-free direct detection of MiRNAs with silicon nanowire biosensors. , 2009, Biosensors & bioelectronics.

[62]  S D Moss,et al.  Chemically sensitive field-effect transistors. , 1976, Biomedical engineering.

[63]  E. Souteyrand,et al.  DIRECT DETECTION OF THE HYBRIDIZATION OF SYNTHETIC HOMO-OLIGOMER DNA SEQUENCES BY FIELD EFFECT , 1997 .

[64]  Luigi Raffo,et al.  Fully electronic DNA hybridization detection by a standard CMOS biochip , 2006 .

[65]  Michael J. Schöning,et al.  Bio FEDs (Field‐Effect Devices): State‐of‐the‐Art and New Directions , 2006 .

[66]  Rita Branquinho,et al.  Label-free detection of biomolecules with Ta2O5-based field effect devices , 2012 .

[67]  T. G. Drummond,et al.  Electrochemical DNA sensors , 2003, Nature Biotechnology.

[68]  James R Heath,et al.  Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. , 2006, Journal of the American Chemical Society.

[69]  Guo-Jun Zhang,et al.  Morpholino-functionalized silicon nanowire biosensor for sequence-specific label-free detection of DNA. , 2010, Biosensors & bioelectronics.

[70]  Mikko Ritala,et al.  Atomic layer deposition of Al2O3, ZrO2, Ta2O5, and Nb2O5 based nanolayered dielectrics , 2002 .

[71]  Li Zhang,et al.  Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus , 2010 .

[72]  Wolfgang B Fischer,et al.  Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor. , 2011, Analytical chemistry.

[73]  Albena Paskaleva,et al.  High-k HfO2-Ta2O5 mixed layers: Electrical characteristics and mechanisms of conductivity , 2010 .

[74]  Jang-Kyoo Shin,et al.  An FET-type charge sensor for highly sensitive detection of DNA sequence. , 2004, Biosensors & bioelectronics.

[75]  Pedro Estrela,et al.  Field-Effect Potentiometric Biosensors , 2007 .

[76]  L. Raffo,et al.  A charge-modulated FET for detection of biomolecular processes: conception, modeling, and simulation , 2006, IEEE Transactions on Electron Devices.

[77]  M. Schöning,et al.  Recent advances in biologically sensitive field-effect transistors (BioFETs). , 2002, The Analyst.

[78]  S. Yildirim,et al.  Dielectric properties of sol–gel derived Ta2O5 thin films , 2005 .

[79]  K. Shepard,et al.  Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. , 2011, Nature nanotechnology.

[80]  P. Estrela,et al.  Field effect detection of biomolecular interactions , 2005 .

[81]  Andreas Offenhäusser,et al.  Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices , 2005 .

[82]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[83]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012 .

[84]  Jung-Min Kim,et al.  DNA hybridization sensor based on pentacene thin film transistor. , 2011, Biosensors & bioelectronics.

[85]  Pedro Barquinha,et al.  Aqueous combustion synthesis of aluminum oxide thin films and application as gate dielectric in GZTO solution-based TFTs. , 2014, ACS applied materials & interfaces.

[86]  Lyndon Gommersall,et al.  Basic principles of real-time quantitative PCR , 2005, Expert review of molecular diagnostics.

[87]  A. Loi,et al.  Organic bendable and stretchable field effect devices for sensing applications , 2012, 2012 IEEE Sensors.

[88]  Pedro Barquinha,et al.  High k dielectrics for low temperature electronics , 2008 .

[89]  Alan Mathewson,et al.  Investigation into the effect that probe immobilisation method type has on the analytical signal of an EIS DNA biosensor. , 2007, Biosensors & bioelectronics.

[90]  N Balasubramanian,et al.  Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. , 2008, Biosensors & bioelectronics.

[91]  V Chu,et al.  Single base mismatch detection by microsecond voltage pulses. , 2005, Biosensors & bioelectronics.

[92]  M. Jamal Deen,et al.  Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design , 2007, Microelectron. Reliab..

[93]  Christopher M.A. Brett,et al.  Electrochemistry: Principles, Methods, and Applications , 1993 .

[94]  R. Stanley Williams,et al.  Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation , 2005 .

[95]  Yuji Miyahara,et al.  DNA Analysis Chip Based on Field-Effect Transistors , 2005 .

[96]  Olfert Landt,et al.  Real-time PCR fluorescent chemistries. , 2007, Methods in molecular biology.