A Laser Altimeter Performance Model and Its Application to BELA

The BepiColombo laser altimeter (BELA) is among the instruments that have been confirmed for flight aboard BepiColombo, which is the European Space Agency's cornerstone mission to the planet Mercury. The harsh environmental conditions around Mercury, accompanied by stringent spacecraft resource limitations, impose challenging constraints on BELA's architecture. To assist with the convergence upon an instrument configuration that can meet experiment requirements within the allocated resource budgets, we have developed a predominantly analytical model of the BELA system performance. The model draws on a diverse set of instrument and environmental parameters to predict signal-to-noise ratios, false detection probabilities (PFDs), and range-measurement uncertainties (sigmaz). The model shows that the baseline instrument is capable of meeting the performance requirements of PFD<0.1 and sigmaz<10 m out to altitudes of 1050 km. The PFD is shown to be the critical figure of merit for design considerations. PFD-conserving resource minimization favors transimpedance amplifier bandwidths as low as tens of megahertz. The instrument, the model, and a set of model outputs are described. The BepiColombo payload is scheduled for launch in 2013

[1]  A. Yariv Optical electronics in modern communications , 1997 .

[2]  G. Arfken Mathematical Methods for Physicists , 1967 .

[3]  Properties of the hermean regolith. II. Disk-resolved multicolor photometry and color variations of the unknown hemisphere , 2002 .

[4]  Chester S. Gardner,et al.  Ranging performance of satellite laser altimeters , 1992, IEEE Trans. Geosci. Remote. Sens..

[5]  B. Hapke,et al.  Bidirectional reflectance spectroscopy. III - Correction for macroscopic roughness. [of planetary surfaces , 1984 .

[6]  D. Muhleman,et al.  Opacity of the Martian atmosphere from the Mars Orbiter Laser Altimeter (MOLA) observations , 1998 .

[7]  A. Mallama,et al.  Photometry of Mercury from SOHO/LASCO and Earth: The Phase Function from 2 to 170° , 2002 .

[8]  Nicolas Thomas,et al.  A tradeoff investigation for the BepiColombo Laser Altimeter design , 2004, SPIE Asia-Pacific Remote Sensing.

[9]  Pete L. Rustan Clementine mission , 1995, Remote Sensing.

[10]  Xiaoli Sun,et al.  MERCURY LASER ALTIMETER INSTRUMENT DESIGN, TESTING, AND PERFORMANCE VERIFICATION , 2004 .

[11]  Bob E Schutz,et al.  The transmitter pointing determination in the Geoscience Laser Altimeter System , 2005 .

[12]  Robert G. Strom,et al.  Tectonism and volcanism on Mercury , 1975 .

[13]  H. Zwally,et al.  Overview of the ICESat Mission , 2005 .

[14]  David E. Smith,et al.  The Mars Observer laser altimeter investigation , 1992 .

[15]  William H. Press,et al.  Numerical recipes in C , 2002 .

[16]  M. Zuber,et al.  Mars Orbiter Laser Altimeter pulse width measurements and footprint‐scale roughness , 2003 .

[17]  David E. Smith,et al.  Topography of the Moon from the Clementine lidar , 1997 .

[18]  David E. Smith,et al.  The NEAR laser ranging investigation , 1997 .

[19]  Robert C. Moore,et al.  The MESSENGER mission to Mercury: spacecraft and mission design , 2001 .

[20]  B. Hapke Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect , 1986 .

[21]  N. Thomas,et al.  First measurements with the Physikalisches Institut Radiometric Experiment (PHIRE) , 2006 .

[22]  Richard D. Starr,et al.  The MESSENGER mission to Mercury: scientific payload , 2001 .

[23]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[24]  M. E. Davies,et al.  A New Controlled Albedo Map of Mercury , 1997 .

[25]  Charles E. Cook,et al.  Radar Signals: An Introduction to Theory and Application , 1967 .

[26]  J. Emery,et al.  Mercury: First Spectra from 0.7 to 5.5 micron Support Low FeO and Feldspathic Composition , 2004 .

[27]  D. Harding,et al.  ICESat waveform measurements of within‐footprint topographic relief and vegetation vertical structure , 2005 .

[28]  Robert J. Heins,et al.  Laser rangefinder for the near-earth asteroid rendezvous (NEAR) mission , 1995, Remote Sensing.

[29]  Isabella T. Lewis,et al.  HiRes camera and lidar ranging system for the Clementine mission , 1995, Defense, Security, and Sensing.

[30]  B. Hapke,et al.  Bidirectional reflectance spectroscopy. I - Theory. [of planetary surfaces , 1981 .

[31]  J. Abshire,et al.  Mars orbiter laser altimeter: receiver model and performance analysis. , 2000, Applied optics.

[32]  J. Abshire,et al.  Space-qualified silicon avalanche-photodiode single-photon-counting modules , 2004 .