Multiple-beam laser–plasma interactions in inertial confinement fusiona)

The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.

[1]  Gennady Shvets,et al.  FAST COMPRESSION OF LASER BEAMS TO HIGHLY OVERCRITICAL POWERS , 1999 .

[2]  D. Phillion,et al.  Half‐ and three‐halves harmonic measurements from laser‐produced plasmas , 1984 .

[3]  R. Berger,et al.  Emission of light at half‐integer harmonics of the laser frequency , 1985 .

[4]  T. C. Sangster,et al.  Laser-beam zooming to mitigate crossed-beam energy losses in direct-drive implosions. , 2013, Physical review letters.

[5]  L. J. Atherton,et al.  Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma , 2012, Nature Physics.

[6]  B. Stansfield,et al.  ENHANCED SCATTERING OF LASER LIGHT BY OPTICAL MIXING IN A PLASMA. , 1971 .

[7]  F. Tsung,et al.  Growth and saturation of convective modes of the two-plasmon decay instability in inertial confinement fusion. , 2009, Physical review letters.

[8]  A. Maximov,et al.  The linear regime of the two-plasmon decay instability in inhomogeneous plasmas , 2010 .

[9]  William J. Hogan,et al.  The National Ignition Facility , 2001 .

[10]  Harvey A. Rose Laser beam deflection by flow and nonlinear self‐focusing , 1996 .

[11]  C. Joshi,et al.  Observation of resonant energy transfer between identical-frequency laser beams , 1998 .

[12]  A. B. Langdon,et al.  Filamentation and forward Brillouin scatter of entire smoothed and aberrated laser beams , 2000 .

[13]  Progress towards polar-drive ignition for the NIF , 2013 .

[14]  P. Michel,et al.  National Ignition Campaign Hohlraum energeticsa) , 2009 .

[15]  Meyer,et al.  Measurement of two plasmon decay instability development in k space of a laser produced plasma and its relation to 3/2-harmonic generation. , 1993, Physical review letters.

[16]  J. J. Thomson,et al.  Enhancement of stimulated Brillouin scattering due to reflection of light from plasma critical surface , 1979 .

[17]  J. J. Thomson,et al.  Theory and simulation of stimulated Brillouin scatter excited by nonabsorbed light in laser fusion systems , 1981 .

[18]  C. Labaune,et al.  SPATIAL AND TEMPORAL COEXISTENCE OF STIMULATED SCATTERING PROCESSES UNDER CROSSED-LASER-BEAM IRRADIATION , 1999 .

[19]  A. Maximov,et al.  Two-plasmon-decay instability in direct-drive inertial confinement fusion experiments , 2009 .

[20]  L. Yin,et al.  A review of laser–plasma interaction physics of indirect-drive fusion , 2013 .

[21]  Villeneuve,et al.  Suppression of stimulated Raman scattering by the seeding of stimulated Brillouin scattering in a laser-produced plasma. , 1987, Physical review letters.

[22]  Richard A. London,et al.  Multi-beam effects on backscatter and its saturation in experiments with conditions relevant to ignitiona) , 2011 .

[23]  P. B. Radha,et al.  Implosion experiments using glass ablators for direct-drive inertial confinement fusion. , 2010, Physical review letters.

[24]  Peter M. Celliers,et al.  Capsule implosion optimization during the indirect-drive National Ignition Campaign , 2010 .

[25]  C. Capjack,et al.  Interaction of crossed laser beams with plasmas , 1996 .

[26]  Edward I. Moses,et al.  The National Ignition Facility: Ushering in a new age for high energy density science , 2009 .

[27]  C Sorce,et al.  Shell trajectory measurements from direct-drive implosion experiments. , 2012, The Review of scientific instruments.

[28]  J D Lindl,et al.  Three-wavelength scheme to optimize hohlraum coupling on the National Ignition Facility. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  R. S. Craxton,et al.  Modeling of stimulated Brillouin scattering near the critical-density surface in the plasmas of direct-drive inertial confinement fusion targets , 2004 .

[30]  Phase conjugation by four‐wave mixing in inhomogeneous plasmas , 1989 .

[31]  P E Young,et al.  Observation of saturation of energy transfer between copropagating beams in a flowing plasma. , 2002, Physical review letters.

[32]  D. T. Michel,et al.  Experimental validation of the two-plasmon-decay common-wave process. , 2012, Physical review letters.

[33]  M. Goldman,et al.  Strong turbulence of plasma waves , 1984 .

[34]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[35]  Jonathan D. Zuegel,et al.  High-energy petawatt capability for the omega laser , 2005 .

[36]  L. Divol,et al.  Observation of the density threshold behavior for the onset of stimulated Raman scattering in high-temperature hohlraum plasmas. , 2009, Physical review letters.

[37]  Martin Richardson,et al.  Observations of high‐energy electron distributions in laser plasmas , 1984 .

[38]  Richard L. Berger,et al.  Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facilitya) , 2009 .

[39]  Milo R. Dorr,et al.  Effects of ion trapping on crossed-laser-beam stimulated Brillouin scattering , 2004 .

[40]  H. Rose,et al.  Collective filamentation in induced spatial incoherence and multiple laser beam configurations , 1992 .

[41]  P. Michel,et al.  Energy transfer between laser beams crossing in ignition hohlraums , 2009 .

[42]  D. Russell,et al.  Mitigation of two-plasmon decay in direct-drive inertial confinement fusion through the manipulation of ion-acoustic and Langmuir wave damping , 2013 .

[43]  Barukh Yaakobi,et al.  Preheat by Fast Electrons in Laser-Fusion Experiments , 1976 .

[44]  G. Laval,et al.  Absolute parametric excitation by an imperfect pump or by turbulence in an inhomogeneous plasma , 1976 .

[45]  Bauer,et al.  Enhanced forward scattering in the case of two crossed laser beams interacting with a plasma , 2000, Physical review letters.

[46]  N. Fisch,et al.  Operating Regime for a Backward Raman Laser Amplifier in Preformed Plasma , 2003 .

[47]  D. F. DuBois,et al.  Quantitative comparison of reduced-description particle-in-cell and quasilinear-Zakharov models for parametrically excited Langmuir turbulence , 2000 .

[48]  Barukh Yaakobi,et al.  Measurements of the divergence of fast electrons in laser-irradiated spherical targets , 2013 .

[49]  Peter A. Amendt,et al.  Design and modeling of ignition targets for the National Ignition Facility , 1995 .

[50]  L. J. Atherton,et al.  Progress Towards Ignition on the National Ignition Facility , 2013 .

[51]  Albert Simon,et al.  On the inhomogeneous two‐plasmon instability , 1983 .

[52]  H. A. Baldis,et al.  Experimental observations of nonlinear saturation of the two-plasmon decay instability , 1981 .

[53]  A. B. Langdon,et al.  On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams , 1998 .

[54]  L Yin,et al.  Self-organized bursts of coherent stimulated Raman scattering and hot electron transport in speckled laser plasma media. , 2012, Physical review letters.

[55]  D. K. Bradley,et al.  Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facilitya) , 2009 .

[56]  P. Chang,et al.  Fast-electron generation in long-scale-length plasmas , 2012 .

[57]  Scott C. Wilks,et al.  Development of a nanosecond-laser-pumped Raman amplifier for short laser pulses in plasma , 2009 .

[58]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[59]  A. Langdon,et al.  Nonlinear saturation and recurrence of the two-plasmon decay instability , 1979 .

[60]  J. D. Kilkenny,et al.  Polar direct drive on the National Ignition Facility , 2004 .

[61]  P. Michel,et al.  Stochastic ion heating from many overlapping laser beams in fusion plasmas. , 2012, Physical review letters.

[62]  O. Klimo,et al.  Fast saturation of the two-plasmon-decay instability for shock-ignition conditions. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  R. Kirkwood,et al.  Resonant stimulated Brillouin interaction of opposed laser beams in a drifting plasma , 1998 .

[64]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[65]  Hot-electron generation by “cavitating” Langmuir turbulence in the nonlinear stage of the two-plasmon–decay instability , 2012 .

[66]  J. A. Marozas,et al.  Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGAa) , 2014 .

[67]  J. Moody,et al.  Observation of Energy Transfer between Identical-Frequency Laser Beams in a Flowing Plasma , 1998 .

[68]  Moody,et al.  Observation of energy transfer between frequency-mismatched laser beams in a large-scale plasma. , 1996, Physical review letters.

[69]  Driven spatially autoresonant stimulated Raman scattering in the kinetic regime. , 2012, Physical review letters.

[70]  J. Kilkenny,et al.  Measurement of fast-electron energy spectra and preheating in laser-irradiated targets , 1979 .

[71]  Effect of spatial turbulence on parametric instabilities , 1979 .

[72]  P. Robinson,et al.  Nonlinear wave collapse and strong turbulence , 1997 .

[73]  L. J. Atherton,et al.  Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility , 2010 .

[74]  A. Maximov,et al.  Harmonic decomposition to describe the nonlinear evolution of stimulated Brillouin scattering , 2003, physics/0307096.

[75]  J. F. Myatt,et al.  Modeling Crossed-Beam Energy Transfer in Implosion Experiments on OMEGA , 2009 .

[76]  D. Russell,et al.  3/2omega0 radiation from the laser-driven two-plasmon decay instability in an inhomogeneous plasma. , 2001, Physical review letters.

[77]  Rose,et al.  Saturation Spectra of the Two-Plasmon Decay Instability. , 1995, Physical review letters.

[78]  Marilyn Schneider,et al.  Analysis of the National Ignition Facility ignition hohlraum energetics experiments a) , 2011 .

[79]  D. Russell,et al.  Hot-electron production and suprathermal heat flux scaling with laser intensity from the two-plasmon–decay instability , 2012 .

[80]  P. Corkum,et al.  Two-Plasmon Decay and Profile Modification Produced by 10.6-μm Radiation at Quarter-Critical Density , 1978 .

[81]  A. B. Langdon,et al.  Analyses of laser-plasma interactions in National Ignition Facility ignition targetsa) , 2007 .

[82]  Peter A. Norreys,et al.  Simulations of efficient Raman amplification into the multipetawatt regime , 2010 .

[83]  P. B. Radha,et al.  Increasing hydrodynamic efficiency by reducing cross-beam energy transfer in direct-drive-implosion experiments. , 2012, Physical review letters.

[84]  H. Rose,et al.  Collective parametric instabilities of many overlapping laser beams with finite bandwidth , 1992 .

[85]  S. Skupsky,et al.  Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution , 2006 .

[86]  H. Baldis,et al.  Hot Electron Generation by the Two-Plasmon Decay Instability in the Laser-Plasma Interaction at 10.6 μm , 1980 .

[87]  P. B. Radha,et al.  Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA , 2004 .

[88]  C. McKinstrie,et al.  Transient Filamentation of a Laser Beam in a Thermal Force Dominated Plasma , 1996 .

[89]  Williams,et al.  Unified Theory of Stimulated Raman Scattering and Two-Plasmon Decay in Inhomogeneous Plasmas: High Frequency Hybrid Instability. , 1995, Physical review letters.

[90]  V. Tikhonchuk,et al.  Kinetic simulations of stimulated Raman backscattering and related processes for the shock-ignition approach to inertial confinement fusion , 2011 .

[91]  D. Meyerhofer,et al.  Multibeam stimulated brillouin scattering from hot, solid-target plasmas. , 2002, Physical review letters.

[92]  A. Maximov,et al.  Multibeam effects on fast-electron generation from two-plasmon-decay instability. , 2003, Physical review letters.

[93]  P. B. Radha,et al.  Demonstration of the highest deuterium-tritium areal density using multiple-picket cryogenic designs on OMEGA. , 2010, Physical review letters.

[94]  Scott C. Wilks,et al.  Energy transfer between crossing laser beams , 1996 .

[95]  Jonathan D. Zuegel,et al.  Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA , 2013 .

[96]  N. Luhmann,et al.  Observation of the growth and saturation of ion waves generated by optical mixing , 1982 .

[97]  Eric Esarey,et al.  Recent results and future challenges for large scale particle-in-cell simulations of plasma-based accelerator concepts , 2009 .

[98]  D. Russell,et al.  The reduced-description particle-in-cell model for the two plasmon decay instability , 2010 .

[99]  A. Maximov,et al.  Modeling stimulated Brillouin scattering in the underdense corona of a direct drive inertial confinement fusion target , 2004 .

[100]  Y. C. Lee,et al.  Temporal Electrostatic Instabilities in Inhomogeneous Plasmas , 1974 .

[101]  E. Williams,et al.  Doppler shift of laser light reflected from expanding plasmas , 1981 .

[102]  Rose,et al.  Observed Dependence of Stimulated Raman Scattering on Ion-Acoustic Damping in Hohlraum Plasmas. , 1996, Physical review letters.

[103]  Williams,et al.  First Optical Observation of Intensity Dependent Laser Beam Deflection in a Flowing Plasma. , 1996, Physical review letters.

[104]  N. Kroll,et al.  Optical Mixing as a Plasma Density Probe , 1964 .

[105]  K. Bowers,et al.  Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulationa) , 2008 .

[106]  D. T. Michel,et al.  Saturation of the two-plasmon decay instability in long-scale-length plasmas relevant to direct-drive inertial confinement fusion. , 2012, Physical review letters.

[107]  D. A. Callahan,et al.  Ray-based calculations of backscatter in laser fusion targets , 2008, 0806.0045.

[108]  Z. Sheng,et al.  Generating energetic electrons through staged acceleration in the two-plasmon-decay instability in inertial confinement fusion. , 2012, Physical review letters.

[109]  M. Goldman Parametric plasmon-photon interactions: Part II. Analysis of plasmon propagator and correlation functions , 1966 .

[110]  P. Michel,et al.  Stimulated Raman scatter analyses of experiments conducted at the National Ignition Facility a) , 2010 .

[111]  S. Laffite,et al.  Design of an ignition target for the laser megajoule, mitigating parametric instabilities , 2010 .

[112]  J. Kline,et al.  Tuning indirect-drive implosions using cone power balance , 2011 .

[113]  Williams,et al.  Effect of Ion-Wave Damping on Stimulated Raman Scattering in High-Z Laser-Produced Plasmas. , 1996, Physical review letters.

[114]  Domier,et al.  Demonstration of Brillouin enhanced four-wave mixing and phase conjugation in a plasma. , 1992, Physical review letters.

[115]  K. Bowers,et al.  Self-organized coherent bursts of stimulated Raman scattering and speckle interaction in multi-speckled laser beams , 2013 .

[116]  M. Rosenbluth Parametric Instabilities in Inhomogeneous Media , 1972 .

[117]  D. T. Michel,et al.  Laser–plasma interactions in direct-drive ignition plasmas , 2012 .

[118]  D. Russell,et al.  The dynamics of hot-electron heating in direct-drive-implosion experiments caused by two-plasmon-decay instability , 2012 .

[119]  S. Skupsky,et al.  Progress in direct-drive inertial confinement fusion , 2004 .

[120]  J. Nuckolls,et al.  Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications , 1972, Nature.

[121]  Progress toward ignition at the National Ignition Facility , 2013 .

[122]  David Strozzi,et al.  Suprathermal electrons generated by the two-plasmon-decay instability in gas-filled Hohlraums , 2008 .

[123]  A Nikroo,et al.  Raman backscatter as a remote laser power sensor in high-energy-density plasmas. , 2013, Physical review letters.

[124]  B. Thidé,et al.  Tromsø Heating Experiments: Stimulated emission at HF pump harmonic and subharmonic frequencies , 1989 .

[125]  P. Norreys Controlling Implosion Symmetry Around a Deuterium-Tritium Target , 2010, Science.

[126]  J D Lindl,et al.  Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. , 2009, Physical review letters.

[127]  S. Depierreux,et al.  Laser–plasma interaction studies in the context of megajoule lasers for inertial fusion , 2002 .

[128]  R. Schroeder,et al.  Time-resolved 3 2 ω 0 spectrum from spherical laser-produced plasmas , 1984 .

[129]  Williams,et al.  Laser Beam Deflection Induced by Transverse Plasma Flow. , 1996, Physical review letters.

[130]  Epstein,et al.  Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments. , 1987, Physical review. A, General physics.

[131]  K. Bowers,et al.  Trapping induced nonlinear behavior of backward stimulated Raman scattering in multi-speckled laser beamsa) , 2011 .

[132]  M. Dorr,et al.  Simulating time-dependent energy transfer between crossed laser beams in an expanding plasma , 2005 .

[133]  Baldis,et al.  Resonant Seeding of Stimulated Brillouin Scattering by Crossing Laser Beams. , 1996, Physical review letters.

[134]  S. Ghosal,et al.  Nonlinear theory of power transfer between multiple crossed laser beams in a flowing plasma , 1998 .

[135]  A. Kaufman,et al.  Parametric instabilities in turbulent, inhomogeneous plasma , 1974 .

[136]  Bedros Afeyan,et al.  Production of hot electrons by two‐plasmon decay instability in uv laser plasmas , 1984 .

[137]  P. Michel,et al.  Saturation of multi-laser beams laser-plasma instabilities from stochastic ion heatinga) , 2013 .

[138]  R. S. Craxton,et al.  Time-resolved absorption in cryogenic and room-temperature direct-drive implosionsa) , 2008 .

[139]  L. J. Atherton,et al.  The experimental plan for cryogenic layered target implosions on the National Ignition Facility--The inertial confinement approach to fusion , 2011 .

[140]  R. Craxton,et al.  Nonlinear laser–matter interaction processes in long‐scale‐length plasmas , 1992 .

[141]  M. Rosenbluth,et al.  Parametric decay of electromagnetic waves into two plasmons and its consequences , 1976 .

[142]  S. Depierreux,et al.  Nonlinear modification of laser–plasma interaction processes under crossed laser beams , 1999 .

[143]  P. Michel Zooming in on Laser-Driven Fusion , 2013 .

[144]  S. R. Goldman,et al.  INCREASED SATURATED LEVELS OF STIMULATED BRILLOUIN SCATTERING OF A LASER BY SEEDING A PLASMA WITH AN EXTERNAL LIGHT SOURCE , 1998 .

[145]  C. Labaune,et al.  Suprathermal and relativistic electrons produced in laser–plasma interaction at 0.26, 0.53, and 1.05 μm laser wavelength , 1992 .

[146]  Barukh Yaakobi,et al.  Measured hot-electron intensity thresholds quantified by a two-plasmon-decay resonant common-wave gain in various experimental configurationsa) , 2013 .

[147]  P. Michel,et al.  The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums , 2011 .

[148]  D. Phillion,et al.  High-energy electron production by the Raman and 2. omega. /sub p/e instabilities in a 1. 064-. mu. m-laser-produced underdense plasma , 1982 .

[149]  John Kelly,et al.  Crossed-beam energy transfer in direct-drive implosions , 2011 .

[150]  J. Dawson Particle simulation of plasmas , 1983 .

[151]  D. Russell,et al.  Nonlinear development of the two-plasmon decay instability in three dimensions , 2014 .

[152]  Stephen D. Jacobs,et al.  OMEGA EP high-energy petawatt laser: progress and prospects , 2008 .

[153]  M. J. Edwards,et al.  Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.