Fusogenic Cell-Derived nanocarriers for cytosolic delivery of cargo inside living cells.

[1]  V. Préat,et al.  Surface Modification of Lipid-Based Nanoparticles. , 2022, ACS nano.

[2]  H. Chakraborty,et al.  Mechanism of Membrane Fusion: Interplay of Lipid and Peptide , 2022, The Journal of Membrane Biology.

[3]  Yuanyu Huang,et al.  mRNA vaccines for COVID-19 and diverse diseases , 2022, Journal of Controlled Release.

[4]  Irene Lostalé‐Seijo,et al.  Boron clusters as broadband membrane carriers , 2022, Nature.

[5]  A. Pandit,et al.  Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation , 2021, ACS nano.

[6]  Ronnie H. Fang,et al.  Virus-Mimicking Cell Membrane-Coated Nanoparticles for Cytosolic Delivery of mRNA. , 2021, Angewandte Chemie.

[7]  A. Boyle,et al.  Liposome fusion with orthogonal coiled coil peptides as fusogens: the efficacy of roleplaying peptides , 2021, Chemical science.

[8]  D. Auguste,et al.  Liposome composition in drug delivery design, synthesis, characterization, and clinical application. , 2021, Advanced drug delivery reviews.

[9]  Q. Zhou,et al.  Lipid Nanoparticles-From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. , 2021, ACS nano.

[10]  Qun Wang,et al.  Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. , 2021, Nanoscale.

[11]  S. D. De Smedt,et al.  The dawn of mRNA vaccines: The COVID-19 case , 2021, Journal of Controlled Release.

[12]  R. Parton,et al.  Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics , 2021, Nature Nanotechnology.

[13]  Nandini N Margam,et al.  Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens , 2021, Cells.

[14]  Ashley M. Jacobi,et al.  CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy , 2020, Science Advances.

[15]  S. Mitragotri,et al.  Nanocarrier‐Mediated Cytosolic Delivery of Biopharmaceuticals , 2020, Advanced Functional Materials.

[16]  B. Giepmans,et al.  Endocytosis of Extracellular Vesicles and Release of Their Cargo from Endosomes , 2020, ACS nano.

[17]  B. Pelaz,et al.  Plasmonic Cell‐Derived Nanocomposites for Light‐Controlled Cargo Release inside Living Cells , 2020, Advanced biosystems.

[18]  M. Stevens,et al.  Cubosomen: die nächste Generation intelligenter Lipid‐Nanopartikel? , 2018, Angewandte Chemie.

[19]  Ricardo Henriques,et al.  SRRF: Universal live-cell super-resolution microscopy , 2018, The international journal of biochemistry & cell biology.

[20]  Ronnie H. Fang,et al.  Cell Membrane Coating Nanotechnology , 2018, Advanced materials.

[21]  Ori Avinoam,et al.  Fusogens , 2018, Current Biology.

[22]  F. Rey,et al.  Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines , 2018, Cell.

[23]  R. Merkel,et al.  Deciphering the Functional Composition of Fusogenic Liposomes , 2018, International journal of molecular sciences.

[24]  Alaaldin M. Alkilany,et al.  Cellular uptake of nanoparticles: journey inside the cell. , 2017, Chemical Society reviews.

[25]  Ulrich Kubitscheck,et al.  Fusogenic Liposomes as Nanocarriers for the Delivery of Intracellular Proteins. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[26]  D. Zheng,et al.  Preferential Cancer Cell Self-Recognition and Tumor Self-Targeting by Coating Nanoparticles with Homotypic Cancer Cell Membranes. , 2016, Nano letters.

[27]  Ricardo Henriques,et al.  Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations , 2016, Nature Communications.

[28]  A. De Vita,et al.  Biomimetic proteolipid vesicles for targeting inflamed tissues , 2016, Nature materials.

[29]  Ronnie H. Fang,et al.  Nanoparticle biointerfacing via platelet membrane cloaking , 2015, Nature.

[30]  Dominik Niopek,et al.  CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. , 2014, Biotechnology journal.

[31]  Omid C Farokhzad,et al.  Insight into nanoparticle cellular uptake and intracellular targeting. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[32]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[33]  Kevin Braeckmans,et al.  Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. , 2013, ACS nano.

[34]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[35]  K. Dawson,et al.  Effects of Transport Inhibitors on the Cellular Uptake of Carboxylated Polystyrene Nanoparticles in Different Cell Lines , 2011, PloS one.

[36]  Ronnie H. Fang,et al.  Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform , 2011, Proceedings of the National Academy of Sciences.

[37]  Katharina Landfester,et al.  Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. , 2011, ACS nano.

[38]  N. Hersch,et al.  Novel fusogenic liposomes for fluorescent cell labeling and membrane modification. , 2010, Bioconjugate chemistry.

[39]  Anne L. van de Ven,et al.  Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. , 2013, Nature nanotechnology.

[40]  Y. Barenholz,et al.  DOTAP (and other cationic lipids): chemistry, biophysics, and transfection. , 2004, Critical reviews in therapeutic drug carrier systems.