Low Stretch Spanning Trees

The paper provides a brief review of problems and results concerning low stretch and low communication spanning trees for graphs.

[1]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[2]  Sudipto Guha,et al.  Rounding via Trees : Deterministic Approximation Algorithms forGroup , 1998 .

[3]  David Peleg,et al.  A Variant of the Arrow Distributed Directory with Low Average Complexity , 1999, ICALP.

[4]  Chuan Yi Tang,et al.  A polynomial time approximation scheme for minimum routing cost spanning trees , 1998, SODA '98.

[5]  Chuan Yi Tang,et al.  A Polynomial Time Approximation Scheme for Optimal Product-Requirement Communication Spanning Trees , 2000, J. Algorithms.

[6]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[7]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[8]  Chuan Yi Tang,et al.  Approximation algorithms for some optimum communication spanning tree problems , 2000, Discret. Appl. Math..

[9]  Leizhen Cai,et al.  Tree Spanners , 1995, SIAM J. Discret. Math..

[10]  Noga Alon,et al.  A Graph-Theoretic Game and Its Application to the k-Server Problem , 1995, SIAM J. Comput..

[11]  David Peleg,et al.  Deterministic Polylog Approximation for Minimum Communication Spanning Trees , 1998, ICALP.

[12]  D. Peleg,et al.  Low Stretch Spanning Trees for Planar Graphs , 2001 .

[13]  T. C. Hu Optimum Communication Spanning Trees , 1974, SIAM J. Comput..

[14]  Richard T. Wong,et al.  Worst-Case Analysis of Network Design Problem Heuristics , 1980, SIAM J. Algebraic Discret. Methods.

[15]  Sudipto Guha,et al.  Approximating a finite metric by a small number of tree metrics , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[16]  Paul D. Seymour,et al.  Packing directed circuits fractionally , 1995, Comb..

[17]  Piotr Indyk,et al.  Algorithmic applications of low-distortion geometric embeddings , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[18]  R. Ravi,et al.  On approximating planar metrics by tree metrics , 2001, Inf. Process. Lett..

[19]  Chuan Yi Tang,et al.  Constructing Light Spanning Trees with Small Routing Cost , 1999, STACS.

[20]  Jan Karel Lenstra,et al.  The complexity of the network design problem , 1978, Networks.

[21]  Moses Charikar,et al.  Approximating min-sum k-clustering in metric spaces , 2001, STOC '01.

[22]  Baruch Awerbuch,et al.  Sparse partitions , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[23]  R. Ravi,et al.  A polylogarithmic approximation algorithm for the group Steiner tree problem , 2000, SODA '98.

[24]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[25]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[26]  Chuan Yi Tang,et al.  Approximation algorithms for the shortest total path length spanning tree problem , 2000, Discret. Appl. Math..

[27]  David Peleg,et al.  An Optimal Synchronizer for the Hypercube , 1989, SIAM J. Comput..

[28]  Ran Raz,et al.  Lower Bounds on the Distortion of Embedding Finite Metric Spaces in Graphs , 1998, Discret. Comput. Geom..

[29]  Sándor P. Fekete,et al.  Tree spanners in planar graphs , 2001, Discret. Appl. Math..

[30]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[31]  Béla Bollobás,et al.  A Ramsey-type theorem for metric spaces and its applications for metrical task systems and related problems , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[32]  Yossi Azar,et al.  Buy-at-bulk network design , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[33]  Joseph Naor,et al.  Divide-and-conquer approximation algorithms via spreading metrics , 2000, JACM.

[34]  Yair Bartal,et al.  On approximating arbitrary metrices by tree metrics , 1998, STOC '98.

[35]  V. B. Le,et al.  Optimal tree 3‐spanners in directed path graphs , 1999 .

[36]  David Peleg Approximating Minimum Communication Spanning Trees , 1997, SIROCCO.