Local structural feature description of point cloud by hierarchical projection

This paper presents a local structural feature description of point cloud to efficiently extract local geometric and structure features from LIDAR data for 3-dimensional objective. This approach using hierarchical projection to maps neighbor points with different radial distance to multi-Mercator layers to obtain different distance information of neighbor points to key points. The Mercator projection, a conformal mapping method, the preserves geometric and structure relationship properly. The local features of key points can be obtained by calculating the distribution histogram of each Mercator planes with normalization method. Comparing the proposed approach with other hand-crafted feature extraction methods on Stanford Bologna dataset and 3Dmatch dataset, our methods outperform on descriptiveness, robustness to noise.

[1]  Mohammed Bennamoun,et al.  Rotational Projection Statistics for 3D Local Surface Description and Object Recognition , 2013, International Journal of Computer Vision.

[2]  Nico Blodow,et al.  Aligning point cloud views using persistent feature histograms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Ko Nishino,et al.  Scale-Dependent/Invariant Local 3D Shape Descriptors for Fully Automatic Registration of Multiple Sets of Range Images , 2008, ECCV.

[4]  A. Aydin Alatan,et al.  Shape Index SIFT: Range Image Recognition Using Local Features , 2010, 2010 20th International Conference on Pattern Recognition.

[5]  Gérard G. Medioni,et al.  Structural Indexing: Efficient 3-D Object Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Li Liu,et al.  Deep Learning for 3D Point Clouds: A Survey , 2020, IEEE transactions on pattern analysis and machine intelligence.

[8]  Dong Tian,et al.  FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[9]  Chin Seng Chua,et al.  Point Signatures: A New Representation for 3D Object Recognition , 1997, International Journal of Computer Vision.

[10]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[11]  Zhiguo Cao,et al.  Toward the Repeatability and Robustness of the Local Reference Frame for 3D Shape Matching: An Evaluation , 2018, IEEE Transactions on Image Processing.

[12]  Slobodan Ilic,et al.  PPFNet: Global Context Aware Local Features for Robust 3D Point Matching , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[13]  Yu Zhong,et al.  Intrinsic shape signatures: A shape descriptor for 3D object recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[14]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[16]  Vladlen Koltun,et al.  Learning Compact Geometric Features , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[17]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[18]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[19]  Mohammed Bennamoun,et al.  TriSI: A Distinctive Local Surface Descriptor for 3D Modeling and Object Recognition , 2016, GRAPP/IVAPP.

[20]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[21]  Mongi A. Abidi,et al.  Surface matching by 3D point's fingerprint , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[22]  Lei Wang,et al.  3D shape recognition and retrieval based on multi-modality deep learning , 2017, Neurocomputing.

[23]  Nico Blodow,et al.  CAD-model recognition and 6DOF pose estimation using 3D cues , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[24]  Gary R. Bradski,et al.  Fast 3D recognition and pose using the Viewpoint Feature Histogram , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Iasonas Kokkinos,et al.  Discriminative Learning of Deep Convolutional Feature Point Descriptors , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[26]  Dong Li,et al.  SGHs for 3D local surface description , 2020, IET Comput. Vis..

[27]  C. Qi Deep Learning on Point Sets for 3 D Classification and Segmentation , 2016 .

[28]  Slobodan Ilic,et al.  3D Local Features for Direct Pairwise Registration , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Zi Jian Yew,et al.  3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration , 2018, ECCV.

[30]  Matthias Nießner,et al.  3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Gérard G. Medioni,et al.  Structural Indexing: Efficient 2D Object Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..