The microwave spectra and structures of Ar–AgX (X=F,Cl,Br)

The rotational spectra of the complexes Ar–AgF, Ar–AgCl, and Ar–AgBr have been observed in the frequency range 6–20 GHz using a pulsed jet cavity Fourier transform microwave spectrometer. All the complexes are linear and rather rigid in the ground vibrational state, with the Ar–Ag stretching frequency estimated as ∼140 cm−1. Isotopic data have been used to calculate an r0 structure for Ar–AgF, while for Ar–AgCl and Ar–AgBr partial substitution structures have also been obtained. To reduce zero-point vibrational effects a double substitution method (rd) was employed to calculate the structures of Ar–AgCl and Ar–AgBr. The Ar–Ag bond distance has been found to be rather short and to range from 2.56 A in Ar–AgF to 2.64 A in Ar–AgBr. Ab initio MP2 and density functional theory calculations for Ar–AgF and Ar–AgCl model the geometries and stretching frequency well, and predict an Ar–Ag bond energy in Ar–AgF of ∼23 kJ mol−1. These results indicate that the Ar–AgX complexes are more strongly bound than typical van...

[1]  E. F. Pearson,et al.  Millimeter- and Submillimeter-Wave Spectra and Molecular Constants of Silver Chloride , 1966 .

[2]  R. Hughes,et al.  Microwave Spectrum of CF3Cl , 1949 .

[3]  C. Jouvet,et al.  Fluorescence excitation spectrum of silver–argon van der Waals complex , 1991 .

[4]  Michael C. Heaven,et al.  Spectroscopy of the AlAr van der Waals complex: Rotationally resolved B 2Σ+←X 2Π1/2 electronic transitions , 1990 .

[5]  Herbert M. Pickett,et al.  The fitting and prediction of vibration-rotation spectra with spin interactions , 1991 .

[6]  S. I. Panov,et al.  The electronic spectroscopy of the Ba+–Ar complex: Potential surface and dissociation energies , 1995 .

[7]  L. Brock,et al.  Photoionization spectroscopy of Ag–rare gas van der Waals complexes , 1995 .

[8]  P. Brucat,et al.  Resonant photodissociation of CoAr+ and CoKr+: Analysis of vibrational structure , 1989 .

[9]  V. Bondybey,et al.  Spectroscopy of the GaAr, GaKr and GaXe X → B electronic transitions , 1993 .

[10]  C. C. Costain,et al.  A NEW CRITERION FOR THE DETERMINATION OF MOLECULAR STRUCTURES FROM GROUND STATE ROTATIONAL CONSTANTS , 1958 .

[11]  S. Dapprich,et al.  Stability of Group 11 Carbonyl Complexes Cl−M−CO (M = Cu, Ag, Au) , 1996 .

[12]  Y. Ohshima,et al.  Rotational spectrum of a salt-containing van der Waals complex: Ar–NaCl , 1998 .

[13]  Y. Ohshima,et al.  Pure rotational spectrum of the mercury–argon van der Waals complex , 1990 .

[14]  F. Lovas,et al.  On the Production and Stability of Some Group III a Monofluorides , 1970 .

[15]  Barrow,et al.  Rotational analysis of the A0+, B0+ ← X 1Ʃ+ systems of gaseous AgF , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[16]  Yunjie Xu,et al.  The rotational spectrum of the isotopically substituted van der Waals complex ArOCS, obtained using a pulsed beam microwave Fourier transform spectrometer , 1992 .

[17]  W. Flygare,et al.  Fabry–Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source , 1981 .

[18]  M. Lester,et al.  Resonant photoionization spectroscopy of refractory metal-rare gas complexes: AlAr , 1987 .

[19]  A. J. Merer,et al.  MICROWAVE SPECTRA OF METAL CHLORIDES PRODUCED USING LASER ABLATION , 1993 .

[20]  P. Hackett,et al.  Spectroscopy of the indium argon van der Waals complex: A high resolution study of the , 1993 .

[21]  S. Novick,et al.  THE INTERMOLECULAR POTENTIAL BETWEEN AN ATOM AND A DIATOMIC MOLECULE - THE STRUCTURE OF ArC1F , 1974 .

[22]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[23]  M. Morse,et al.  Spectroscopy of AlAr and AlKr from 31 000 cm-1 to the ionization limit , 1992 .

[24]  M. E. Ruiz,et al.  Nonadditivity and the stability of Ag3. A multireference configuration interaction study , 1990 .

[25]  R. Smalley,et al.  The dispersed fluorescence spectrum of NaAr: Ground and excited state potential curves , 1979 .

[26]  K. Walker,et al.  Microwave Fourier Transform Spectroscopy of Magnesium Sulfide Produced by Laser Ablation , 1997 .

[27]  C. Yeh,et al.  Photodissociation spectroscopy of the Mg+–CO2 complex and its isotopic analogs , 1993 .

[28]  H. A. Willis,et al.  Far infrared and millimetre-wave absorption spectra of some low-loss polymers , 1971 .

[29]  A. B. Ritchie Scaled‐Particle Methods for a Hard Convex‐Body Fluid , 1967 .

[30]  C. Yeh,et al.  Photodissociation spectroscopy of Mg+–rare gas complexes , 1994 .

[31]  Yunjie Xu,et al.  Microwave spectroscopic investigation of the weakly bound dimer carbon monoxide-chlorine, OCCl2 , 1993 .

[32]  R. Engelmann,et al.  Inclusive K0, Lambda0, K*+/-(890), and Sigma*+/-(1385) production in pp collisions at 300 GeV/c , 1980 .

[33]  R. Steudel,et al.  The Molecular Composition of Hydrophilic Sulfur Sols Prepared by Acid Decomposition of Thiosulfate [1] , 1988 .

[34]  A. Legon,et al.  Rotational spectrum of the gas-phase dimer OC⋯BrCl , 1994 .

[35]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[36]  L. Pierce Note on the use of ground-state rotational constants in the determination of molecular structures , 1959 .

[37]  J. Hutson,et al.  ON THE CHOICE OF INERTIAL AXES FOR INTERPRETING SPECTROSCOPIC PROPERTIES OF VAN DER WAALS COMPLEXES , 1994 .

[38]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[39]  C. Callender,et al.  Interatomic potentials for van der Waals complexes of group 13 metal atoms: InAr, InKr, and InXe , 1989 .