The microwave spectra and structures of Ar–AgX (X=F,Cl,Br)
暂无分享,去创建一个
[1] E. F. Pearson,et al. Millimeter- and Submillimeter-Wave Spectra and Molecular Constants of Silver Chloride , 1966 .
[2] R. Hughes,et al. Microwave Spectrum of CF3Cl , 1949 .
[3] C. Jouvet,et al. Fluorescence excitation spectrum of silver–argon van der Waals complex , 1991 .
[4] Michael C. Heaven,et al. Spectroscopy of the AlAr van der Waals complex: Rotationally resolved B 2Σ+←X 2Π1/2 electronic transitions , 1990 .
[5] Herbert M. Pickett,et al. The fitting and prediction of vibration-rotation spectra with spin interactions , 1991 .
[6] S. I. Panov,et al. The electronic spectroscopy of the Ba+–Ar complex: Potential surface and dissociation energies , 1995 .
[7] L. Brock,et al. Photoionization spectroscopy of Ag–rare gas van der Waals complexes , 1995 .
[8] P. Brucat,et al. Resonant photodissociation of CoAr+ and CoKr+: Analysis of vibrational structure , 1989 .
[9] V. Bondybey,et al. Spectroscopy of the GaAr, GaKr and GaXe X → B electronic transitions , 1993 .
[10] C. C. Costain,et al. A NEW CRITERION FOR THE DETERMINATION OF MOLECULAR STRUCTURES FROM GROUND STATE ROTATIONAL CONSTANTS , 1958 .
[11] S. Dapprich,et al. Stability of Group 11 Carbonyl Complexes Cl−M−CO (M = Cu, Ag, Au) , 1996 .
[12] Y. Ohshima,et al. Rotational spectrum of a salt-containing van der Waals complex: Ar–NaCl , 1998 .
[13] Y. Ohshima,et al. Pure rotational spectrum of the mercury–argon van der Waals complex , 1990 .
[14] F. Lovas,et al. On the Production and Stability of Some Group III a Monofluorides , 1970 .
[15] Barrow,et al. Rotational analysis of the A0+, B0+ ← X 1Ʃ+ systems of gaseous AgF , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[16] Yunjie Xu,et al. The rotational spectrum of the isotopically substituted van der Waals complex ArOCS, obtained using a pulsed beam microwave Fourier transform spectrometer , 1992 .
[17] W. Flygare,et al. Fabry–Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source , 1981 .
[18] M. Lester,et al. Resonant photoionization spectroscopy of refractory metal-rare gas complexes: AlAr , 1987 .
[19] A. J. Merer,et al. MICROWAVE SPECTRA OF METAL CHLORIDES PRODUCED USING LASER ABLATION , 1993 .
[20] P. Hackett,et al. Spectroscopy of the indium argon van der Waals complex: A high resolution study of the , 1993 .
[21] S. Novick,et al. THE INTERMOLECULAR POTENTIAL BETWEEN AN ATOM AND A DIATOMIC MOLECULE - THE STRUCTURE OF ArC1F , 1974 .
[22] H. Stoll,et al. Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .
[23] M. Morse,et al. Spectroscopy of AlAr and AlKr from 31 000 cm-1 to the ionization limit , 1992 .
[24] M. E. Ruiz,et al. Nonadditivity and the stability of Ag3. A multireference configuration interaction study , 1990 .
[25] R. Smalley,et al. The dispersed fluorescence spectrum of NaAr: Ground and excited state potential curves , 1979 .
[26] K. Walker,et al. Microwave Fourier Transform Spectroscopy of Magnesium Sulfide Produced by Laser Ablation , 1997 .
[27] C. Yeh,et al. Photodissociation spectroscopy of the Mg+–CO2 complex and its isotopic analogs , 1993 .
[28] H. A. Willis,et al. Far infrared and millimetre-wave absorption spectra of some low-loss polymers , 1971 .
[29] A. B. Ritchie. Scaled‐Particle Methods for a Hard Convex‐Body Fluid , 1967 .
[30] C. Yeh,et al. Photodissociation spectroscopy of Mg+–rare gas complexes , 1994 .
[31] Yunjie Xu,et al. Microwave spectroscopic investigation of the weakly bound dimer carbon monoxide-chlorine, OCCl2 , 1993 .
[32] R. Engelmann,et al. Inclusive K0, Lambda0, K*+/-(890), and Sigma*+/-(1385) production in pp collisions at 300 GeV/c , 1980 .
[33] R. Steudel,et al. The Molecular Composition of Hydrophilic Sulfur Sols Prepared by Acid Decomposition of Thiosulfate [1] , 1988 .
[34] A. Legon,et al. Rotational spectrum of the gas-phase dimer OC⋯BrCl , 1994 .
[35] A. Becke. Density-functional thermochemistry. III. The role of exact exchange , 1993 .
[36] L. Pierce. Note on the use of ground-state rotational constants in the determination of molecular structures , 1959 .
[37] J. Hutson,et al. ON THE CHOICE OF INERTIAL AXES FOR INTERPRETING SPECTROSCOPIC PROPERTIES OF VAN DER WAALS COMPLEXES , 1994 .
[38] A. D. McLean,et al. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .
[39] C. Callender,et al. Interatomic potentials for van der Waals complexes of group 13 metal atoms: InAr, InKr, and InXe , 1989 .