Automated EEG Analysis for Neonatal Intensive Care

Abstract The neonatal EEG is a powerful tool for assessing neurological function in critically ill neonates. It is however difficult to interpret and the expertise to translate the EEG is typically not available to the attending clinician on demand. Automated algorithms can fill the role of EEG translator and help support decision making in the neonatal intensive care unit. These algorithms can detect seizures, bursting activity and sleep state, determine the ‘normality’ of the EEG, and estimate the developmental maturity of the brain. They use a variety of EEG features combined using a range of classifiers to form a decision statistic. Several of these algorithms are approaching the benchmark of the visual interpretation of the human expert, while others are at the prototype stage. The complete development of these algorithms requires the collective efforts of engineers and clinicians and has the potential to improve clinical care and subsequent health outcomes of critically ill neonates.

[1]  A. Flisberg,et al.  Automatic classification of background EEG activity in healthy and sick neonates , 2010, Journal of neural engineering.

[2]  J. Bellanger,et al.  Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition , 2002, The European journal of neuroscience.

[3]  K. A. Loparo,et al.  Nonlinear dynamical analysis of the neonatal EEG time series: The relationship between neurodevelopment and complexity , 2008, Clinical Neurophysiology.

[4]  C J Stam,et al.  Neonatal Seizure Monitoring Using Non-Linear EEG Analysis , 2004, Neuropediatrics.

[5]  G. Lightbody,et al.  EEG-based neonatal seizure detection with Support Vector Machines , 2011, Clinical Neurophysiology.

[6]  J. Frost,et al.  A Multistage System for the Automated Detection of Epileptic Seizures in Neonatal Electroencephalography , 2009, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[7]  Sabine Van Huffel,et al.  An Automated Quiet Sleep Detection Approach in Preterm Infants as a Gateway to Assess Brain Maturation , 2017, Int. J. Neural Syst..

[8]  Sampsa Vanhatalo,et al.  Sleep wake cycling in early preterm infants: Comparison of polysomnographic recordings with a novel EEG-based index , 2013, Clinical Neurophysiology.

[9]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[10]  William P. Fifer,et al.  EEG functional connectivity in term age extremely low birth weight infants , 2008, Clinical Neurophysiology.

[11]  Sabine Van Huffel,et al.  Holistic approach for automated background EEG assessment in asphyxiated full-term infants , 2014, Journal of neural engineering.

[12]  N. Thakor,et al.  Higher-order spectral analysis of burst patterns in EEG , 1999, IEEE Transactions on Biomedical Engineering.

[13]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[14]  Mostefa Mesbah,et al.  Time-Frequency Feature Extraction of Newborn EEG Seizure Using SVD-Based Techniques , 2004, EURASIP J. Adv. Signal Process..

[15]  William P. Marnane,et al.  EEG Signal Description with Spectral-Envelope-Based Speech Recognition Features for Detection of Neonatal Seizures , 2011, IEEE Transactions on Information Technology in Biomedicine.

[16]  Stephen J. Elliott,et al.  Efficient estimation of a time-varying dimension parameter and its application to EEG analysis , 2003, IEEE Transactions on Biomedical Engineering.

[17]  Robert R. Clancy,et al.  Impact of Continuous EEG Monitoring on Clinical Management in Critically Ill Children , 2011, Neurocritical care.

[18]  D. Goodman,et al.  Epidemiologic Trends in Neonatal Intensive Care, 2007-2012. , 2015, JAMA pediatrics.

[19]  J. Frenzel,et al.  Brain dysmaturity index for automatic detection of high-risk infants. , 2000, Pediatric neurology.

[20]  G. Lightbody,et al.  Detecting Neonatal Seizures With Computer Algorithms. , 2016, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[21]  Paul B. Colditz,et al.  A computer-aided detection of EEG seizures in infants: a singular-spectrum approach and performance comparison , 2002, IEEE Transactions on Biomedical Engineering.

[22]  Marina De Vos,et al.  Early development of synchrony in cortical activations in the human , 2016, Neuroscience.

[23]  N. Marlow,et al.  Outcome following neonatal seizures. , 2013, Seminars in fetal & neonatal medicine.

[24]  G B Boylan,et al.  Gaussian mixture models for classification of neonatal seizures using EEG , 2010, Physiological measurement.

[25]  M. De Vos,et al.  Validation of a new automated neonatal seizure detection system: A clinician’s perspective , 2011, Clinical Neurophysiology.

[26]  A. Aarabi,et al.  A multistage knowledge-based system for EEG seizure detection in newborn infants , 2007, Clinical Neurophysiology.

[27]  Joseph Sullivan,et al.  Interrater agreement in the interpretation of neonatal electroencephalography in hypoxic‐ischemic encephalopathy , 2017, Epilepsia.

[28]  William P. Marnane,et al.  Neonatal Seizure Detection Using Atomic Decomposition With a Novel Dictionary , 2014, IEEE Transactions on Biomedical Engineering.

[29]  D. Rowitch,et al.  The Role of the Neurointensive Care Nursery for Neonatal Encephalopathy. , 2016, Clinics in perinatology.

[30]  T. Higuchi Approach to an irregular time series on the basis of the fractal theory , 1988 .

[31]  J. Gotman,et al.  Automatic seizure detection in the newborn: methods and initial evaluation. , 1997, Electroencephalography and clinical neurophysiology.

[32]  William P. Marnane,et al.  Robust neonatal EEG seizure Detection through Adaptive Background Modeling , 2013, Int. J. Neural Syst..

[33]  G. Lightbody,et al.  Grading hypoxic–ischemic encephalopathy severity in neonatal EEG using GMM supervectors and the support vector machine , 2016, Clinical Neurophysiology.

[34]  Akihisa Okumura,et al.  Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants , 1999, Brain and Development.

[35]  S. Vanhatalo,et al.  Automated classification of neonatal sleep states using EEG , 2017, Clinical Neurophysiology.

[36]  Sabine Van Huffel,et al.  Line length as a robust method to detect high-activity events: Automated burst detection in premature EEG recordings , 2014, Clinical Neurophysiology.

[37]  Espen A. F. Ihlen,et al.  Introduction to Multifractal Detrended Fluctuation Analysis in Matlab , 2012, Front. Physio..

[38]  I. Rosén,et al.  Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. , 1995, Archives of disease in childhood. Fetal and neonatal edition.

[39]  C. Stam,et al.  Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field , 2005, Clinical Neurophysiology.

[40]  Michael Breakspear,et al.  Cortical burst dynamics predict clinical outcome early in extremely preterm infants. , 2015, Brain : a journal of neurology.

[41]  Kenneth A. Loparo,et al.  Automated detection of neonate EEG sleep stages , 2009, Comput. Methods Programs Biomed..

[42]  Michael Wallendorf,et al.  Treating EEG Seizures in Hypoxic Ischemic Encephalopathy: A Randomized Controlled Trial , 2015, Pediatrics.

[43]  G B Boylan,et al.  Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures , 2007, Archives of Disease in Childhood Fetal and Neonatal Edition.

[44]  Neil Marlow,et al.  Long-Range Temporal Correlations in the EEG Bursts of Human Preterm Babies , 2012, PloS one.

[45]  Sampsa Vanhatalo,et al.  Optimization of an NLEO-based algorithm for automated detection of spontaneous activity transients in early preterm EEG , 2010, Physiological measurement.

[46]  Kenneth A. Loparo,et al.  Optimal channel selection for analysis of EEG-sleep patterns of neonates , 2012, Comput. Methods Programs Biomed..

[47]  D. Maynard,et al.  Device for continuous monitoring of cerebral activity in resuscitated patients. , 1969, British medical journal.

[48]  Anton Tokariev,et al.  Phase synchrony in the early preterm EEG: Development of methods for estimating synchrony in both oscillations and events , 2012, NeuroImage.

[49]  William P. Marnane,et al.  Instantaneous Measure of EEG Channel Importance for Improved Patient-Adaptive Neonatal Seizure Detection , 2012, IEEE Transactions on Biomedical Engineering.

[50]  Boualem Boashash,et al.  Analytic signal generation-tips and traps , 1994, IEEE Trans. Signal Process..

[51]  Michael Breakspear,et al.  Early Detection of Preterm Intraventricular Hemorrhage From Clinical Electroencephalography , 2015, Critical care medicine.

[52]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[53]  Sampsa Vanhatalo,et al.  Detecting bursts in the EEG of very and extremely premature infants using a multi-feature approach , 2017, Medical engineering & physics.

[54]  J. Palva,et al.  Neuronal synchrony reveals working memory networks and predicts individual memory capacity , 2010, Proceedings of the National Academy of Sciences.

[55]  A. Legido,et al.  The Exact Ictal and Interictal Duration of Electroencephalographic Neonatal Seizures , 1987, Epilepsia.

[56]  Guozhi Tao,et al.  Automated detection of videotaped neonatal seizures based on motion segmentation methods , 2006, Clinical Neurophysiology.

[57]  A. Zoubir,et al.  Seizure detection of newborn EEG using a model-based approach , 1998 .

[58]  Shanbao Tong,et al.  Advances in quantitative electroencephalogram analysis methods. , 2004, Annual review of biomedical engineering.

[59]  L. D. de Vries,et al.  A Comparison of the Thompson Encephalopathy Score and Amplitude-Integrated Electroencephalography in Infants with Perinatal Asphyxia and Therapeutic Hypothermia , 2017, Neonatology.

[60]  H. Stanley,et al.  Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. , 1995, Chaos.

[61]  Joseph E. Sullivan,et al.  American Clinical Neurophysiology Society Standardized EEG Terminology and Categorization for the Description of Continuous EEG Monitoring in Neonates: Report of the American Clinical Neurophysiology Society Critical Care Monitoring Committee , 2013, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[62]  Geraldine B. Boylan,et al.  Automated analysis of multi-channel EEG in preterm infants , 2015, Clinical Neurophysiology.

[63]  Donna M. Ferriero,et al.  A new neurological focus in neonatal intensive care , 2011, Nature Reviews Neurology.

[64]  Okko Johannes Räsänen,et al.  Development of a novel robust measure for interhemispheric synchrony in the neonatal EEG: Activation Synchrony Index (ASI) , 2013, NeuroImage.

[65]  Sankey V. Williams,et al.  Could EEG Monitoring in Critically Ill Children Be a Cost-effective Neuroprotective Strategy? , 2015, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[66]  John M. O'Toole,et al.  Improved Discrete Definition of Quadratic Time-Frequency Distributions , 2010, IEEE Transactions on Signal Processing.

[67]  B Boashash,et al.  A nonparametric feature for neonatal EEG seizure detection based on a representation of pseudo-periodicity. , 2012, Medical engineering & physics.

[68]  Gabriel Rilling,et al.  Empirical mode decomposition as a filter bank , 2004, IEEE Signal Processing Letters.

[69]  G. Lightbody,et al.  An Automated System for Grading EEG Abnormality in Term Neonates with Hypoxic-Ischaemic Encephalopathy , 2012, Annals of Biomedical Engineering.

[70]  M. Steriade Grouping of brain rhythms in corticothalamic systems , 2006, Neuroscience.

[71]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[72]  William P. Marnane,et al.  Exploring temporal information in neonatal seizures using a dynamic time warping based SVM kernel , 2017, Comput. Biol. Medicine.

[73]  G. Lightbody,et al.  Performance assessment for EEG-based neonatal seizure detectors , 2011, Clinical Neurophysiology.

[74]  M. Scher,et al.  Ontogeny of EEG-sleep from neonatal through infancy periods. , 2008, Sleep medicine.

[75]  M. Blennow,et al.  The prognostic value of early aEEG in asphyxiated infants undergoing systemic hypothermia treatment , 2010, Acta paediatrica.

[76]  Carola van Pul,et al.  Maturational Changes in Automated EEG Spectral Power Analysis in Preterm Infants , 2011, Pediatric Research.

[77]  Gordon Lightbody,et al.  Inclusion of temporal priors for automated neonatal EEG classification , 2012, Journal of neural engineering.

[78]  A. Liu,et al.  Detection of neonatal seizures through computerized EEG analysis. , 1992, Electroencephalography and clinical neurophysiology.

[79]  A. Engel,et al.  Intrinsic Coupling Modes: Multiscale Interactions in Ongoing Brain Activity , 2013, Neuron.

[80]  Maja Cic,et al.  Automatic classification of infant sleep based on instantaneous frequencies in a single-channel EEG signal , 2013, Comput. Biol. Medicine.

[81]  L. D. de Vries,et al.  Recovery of amplitude integrated electroencephalographic background patterns within 24 hours of perinatal asphyxia , 2005, Archives of Disease in Childhood - Fetal and Neonatal Edition.

[82]  J. Zempel,et al.  A pilot study of continuous limited-channel aEEG in term infants with encephalopathy. , 2009, The Journal of pediatrics.

[83]  Michael A. Navakatikyan,et al.  Automatic measurement of interburst interval in premature neonates using range EEG , 2016, Clinical Neurophysiology.

[84]  Marina De Vos,et al.  Improved multi-stage neonatal seizure detection using a heuristic classifier and a data-driven post-processor , 2016, Clinical Neurophysiology.

[85]  Boualem Boashash,et al.  Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study , 2016, Knowl. Based Syst..

[86]  Michael A. Navakatikyan,et al.  Peak-to-peak amplitude in neonatal brain monitoring of premature infants , 2012, Clinical Neurophysiology.

[87]  N. J. Stevenson,et al.  Estimating functional brain maturity in very and extremely preterm neonates using automated analysis of the electroencephalogram , 2016, Clinical Neurophysiology.

[88]  B. Boashash,et al.  Effective implementation of time-frequency matched filter with adapted pre and postprocessing for data-dependent detection of newborn seizures. , 2013, Medical engineering & physics.

[89]  Robert Oostenveld,et al.  An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias , 2011, NeuroImage.

[90]  Mostefa Mesbah,et al.  Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models , 2014, NeuroImage.

[91]  Sampsa Vanhatalo,et al.  Detection of ‘EEG bursts’ in the early preterm EEG: Visual vs. automated detection , 2010, Clinical Neurophysiology.

[92]  G. Lightbody,et al.  Heart rate based automatic seizure detection in the newborn. , 2010, Medical engineering & physics.

[93]  Herbert Witte,et al.  On the rhythmicity of quadratic phase coupling in the tracé alternant EEG in healthy neonates , 2004, Neuroscience Letters.

[94]  G. Taga,et al.  Probability distributions of the electroencephalogram envelope of preterm infants , 2015, Clinical Neurophysiology.

[95]  Schulte Fj,et al.  Maturation of EEG activity during sleep in premature infants. , 1968, Electroencephalography and clinical neurophysiology.

[96]  Boualem Boashash,et al.  A methodology for time-frequency image processing applied to the classification of non-stationary multichannel signals using instantaneous frequency descriptors with application to newborn EEG signals , 2012, EURASIP J. Adv. Signal Process..

[97]  G. Boylan,et al.  Early EEG Grade and Outcome at 5 Years After Mild Neonatal Hypoxic Ischemic Encephalopathy , 2016, Pediatrics.

[98]  S M Pincus,et al.  Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[99]  J. Gotman,et al.  Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. , 1976, Electroencephalography and Clinical Neurophysiology.

[100]  William P. Marnane,et al.  Validation of an automated seizure detection algorithm for term neonates , 2016, Clinical Neurophysiology.

[101]  John S. Barlow,et al.  Computerized Clinical Electroencephalography in Perspective , 1979, IEEE Transactions on Biomedical Engineering.

[102]  Taeun Chang,et al.  The American Clinical Neurophysiology Society's Guideline on Continuous Electroencephalography Monitoring in Neonates. , 2011, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[103]  Sabine Van Huffel,et al.  Objective differentiation of neonatal EEG background grades using detrended fluctuation analysis , 2015, Front. Hum. Neurosci..

[104]  J. Palva,et al.  Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[105]  G. Boylan,et al.  Sleep–wake cycle of the healthy term newborn infant in the immediate postnatal period , 2016, Clinical Neurophysiology.

[106]  I. Korotchikova,et al.  EEG in the healthy term newborn within 12hours of birth , 2009, Clinical Neurophysiology.

[107]  C. Stam,et al.  Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources , 2007, Human brain mapping.

[108]  N Monod,et al.  Neonatal Electroencephalography During the First Twenty-Four Hours of Life in Full-Term Newborn Infants , 1986, Neuropediatrics.

[109]  Vitaly Schetinin,et al.  Extraction of features from sleep EEG for Bayesian assessment of brain development , 2017, PloS one.

[110]  Eric Marsh,et al.  Interobserver Reproducibility of Electroencephalogram Interpretation in Critically Ill Children , 2011, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[111]  Mostefa Mesbah,et al.  A matching pursuit-based signal complexity measure for the analysis of newborn EEG , 2007, Medical & Biological Engineering & Computing.

[112]  S. Vanhatalo,et al.  Measuring brain activity cycling (BAC) in long term EEG monitoring of preterm babies. , 2014, Physiological measurement.

[113]  N Löfgren,et al.  Classification of burst and suppression in the neonatal electroencephalogram , 2008, Journal of neural engineering.

[114]  Mohamed Moshrefi-Torbati,et al.  Signal processing techniques applied to human sleep EEG signals - A review , 2014, Biomed. Signal Process. Control..

[115]  M. De Vos,et al.  Automated artifact removal as preprocessing refines neonatal seizure detection , 2011, Clinical Neurophysiology.

[116]  Sampsa Vanhatalo,et al.  Incorporating spike correlations into an SVM-based neonatal seizure detector , 2017 .

[117]  Cornelis J Stam,et al.  Seizure detection in the neonatal EEG with synchronization likelihood , 2003, Clinical Neurophysiology.

[118]  K. Kaila,et al.  Development of neonatal EEG activity: from phenomenology to physiology. , 2006, Seminars in fetal & neonatal medicine.

[119]  M. Scher,et al.  Neurophysiological assessment of brain function and maturation. II. A measure of brain dysmaturity in healthy preterm neonates. , 1997, Pediatric neurology.

[120]  G. Lightbody,et al.  A comparison of quantitative EEG features for neonatal seizure detection , 2008, Clinical Neurophysiology.

[121]  R B Reilly,et al.  Classifier models and architectures for EEG-based neonatal seizure detection , 2008, Physiological measurement.

[122]  Mostefa Mesbah,et al.  Newborn Seizure Detection Based on Heart Rate Variability , 2009, IEEE Transactions on Biomedical Engineering.

[123]  Sean Connolly,et al.  Early EEG Findings in Hypoxic-Ischemic Encephalopathy Predict Outcomes at 2 Years , 2009, Pediatrics.

[124]  Joachim Schult,et al.  The combined technique for detection of artifacts in clinical electroencephalograms of sleeping newborns , 2004, IEEE Transactions on Information Technology in Biomedicine.

[125]  Sampsa Vanhatalo,et al.  Interobserver agreement for neonatal seizure detection using multichannel EEG , 2015, Annals of clinical and translational neurology.

[126]  S. Huffel,et al.  Automated neonatal seizure detection mimicking a human observer reading EEG , 2008, Clinical Neurophysiology.

[127]  Marina De Vos,et al.  The suppression curve as a quantitative approach for measuring brain maturation in preterm infants , 2016, Clinical Neurophysiology.

[128]  Carola van Pul,et al.  Automatic burst detection for the EEG of the preterm infant. , 2011, Physiological measurement.

[129]  Amit Mukherjee,et al.  Detection of pseudosinusoidal epileptic seizure segments in the neonatal EEG by cascading a rule-based algorithm with a neural network , 2006, IEEE Transactions on Biomedical Engineering.

[130]  T. Inder,et al.  Seizure detection algorithm for neonates based on wave-sequence analysis , 2006, Clinical Neurophysiology.

[131]  J. Gotman,et al.  Evaluation of an automatic seizure detection method for the newborn EEG. , 1997, Electroencephalography and clinical neurophysiology.

[132]  R. Grebe,et al.  Automated neonatal seizure detection: A multistage classification system through feature selection based on relevance and redundancy analysis , 2006, Clinical Neurophysiology.