A Simple and Highly Efficient Method for Synthesis of Ce3+‐Activated Borogermanate Scintillating Glasses in Air
暂无分享,去创建一个
Zhi-Jun Zhang | R. Mao | Yuntao Wu | Jingtai Zhao | Xinyuan Sun | Z. Ye | Pan Gao
[1] M. Nikl,et al. Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multicomponent garnets: An X-ray absorption near edge spectroscopy study , 2014 .
[2] Zhang Yuepin,et al. High light yield Ce3+-doped dense scintillating glasses , 2013 .
[3] Zhi-Jun Zhang,et al. Luminescent properties of Tb3 +-activated B2O3–GeO2–Gd2O3 scintillating glasses , 2013 .
[4] M. Moszynski,et al. Comparison of absorption, luminescence and scintillation characteristics in Lu1.95Y0.05SiO5:Ce,Ca and Y2SiO5:Ce scintillators , 2013 .
[5] Zhijun Zhang,et al. Eu3+‐Activated Borogermanate Scintillating Glass with a High Gd2O3 Content , 2013 .
[6] M. Gu,et al. Enhanced luminescence in transparent glass ceramics containing BaYF5: Ce3+ nanocrystals , 2012 .
[7] D. Ding,et al. Investigation on the influence of cerium doping form on the luminescence properties of Lu0.8Sc0.2BO3 scintillation crystals , 2012 .
[8] Cai-Lin Wang,et al. Rare-earth Activated Glass and Glass-Ceramic for Neutron Detection , 2012 .
[9] Danping Chen,et al. Luminescence and scintillation of Ce3+‐doped oxide glass with high Gd2O3 concentration , 2011 .
[10] M. Stutzmann. 1961–2011: Celebrating the 50th Anniversary of physica status solidi ! , 2011 .
[11] M. Berkowski,et al. The Czochralski Growth of (Lu1−xGdx)2SiO5:Dy Single Crystals: Structural, Optical, and Dielectric Characterization , 2010 .
[12] Guorong Chen,et al. Luminescence Behaviors of Ce3+ Ions in Chalcohalide Glasses , 2010 .
[13] G. Han,et al. Reduction of Eu3+ to Eu2+ in Aluminoborosilicate Glasses Prepared in Air , 2008 .
[14] J. M. Parker,et al. Eu3+-activated heavy scintillating glasses , 2008 .
[15] Norberto Chiodini,et al. Insights into microstructural features governing Ce3+ luminescence efficiency in sol-gel silica glasses , 2006 .
[16] K. Morinaga,et al. Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses , 2005 .
[17] B. Ravel,et al. ATHENA and ARTEMIS: interactive graphical data analysis using IFEFFIT , 2005 .
[18] L. Qin,et al. Scintillation characteristics of lutetium oxyorthosilicate (Lu2SiO5:Ce) crystals doped with cerium ions , 2004 .
[19] Fuxi Gan,et al. Radioluminescence of Ce3+-doped B2O3–SiO2–Gd2O3–BaO glass , 2004 .
[20] Mingying Peng,et al. The reduction of Eu3+ to Eu2+ in BaMgSiO4∶Eu prepared in air and the luminescence of BaMgSiO4∶Eu2+ phosphor , 2003 .
[21] Martin Nikl,et al. Efficient radioluminescence of the Ce3+-doped Na–Gd phosphate glasses , 2000 .
[22] P. Hobson,et al. Optical and physical characteristics of HBLAN fluoride glasses containing cerium , 1999 .
[23] Steve W. Martin,et al. New high-density fluoride glasses doped with CeF3 , 1995 .
[24] Bianconi,et al. Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption. , 1987, Physical review. B, Condensed matter.
[25] M. Ingram,et al. An interpretation of glass chemistry in terms of the optical basicity concept , 1976 .