A Simple and Highly Efficient Method for Synthesis of Ce3+‐Activated Borogermanate Scintillating Glasses in Air

Fast Ce3+-activated borogermanate scintillating glasses with the density of 5.58–5.67 g/cm3 were synthesized by melt quenching method in air atmosphere for the first time. The optical transmittance and X-ray absorption near edge spectroscopy results confirm that Ce4+ ions can be effectively reduced to Ce3+ ions by adding 0.31 mol% Si3N4 as a strong reducing agent during glass synthesis. The luminescence behavior under both ultraviolet and X-ray excitations indicate that the proposed Ce3+-activated borogermanate scintillating glasses have a broad emission band centered at 430 nm and a decay time of less than 25 ns. This will be of great interest in high-energy physics and nuclear physics engineering.

[1]  M. Nikl,et al.  Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multicomponent garnets: An X-ray absorption near edge spectroscopy study , 2014 .

[2]  Zhang Yuepin,et al.  High light yield Ce3+-doped dense scintillating glasses , 2013 .

[3]  Zhi-Jun Zhang,et al.  Luminescent properties of Tb3 +-activated B2O3–GeO2–Gd2O3 scintillating glasses , 2013 .

[4]  M. Moszynski,et al.  Comparison of absorption, luminescence and scintillation characteristics in Lu1.95Y0.05SiO5:Ce,Ca and Y2SiO5:Ce scintillators , 2013 .

[5]  Zhijun Zhang,et al.  Eu3+‐Activated Borogermanate Scintillating Glass with a High Gd2O3 Content , 2013 .

[6]  M. Gu,et al.  Enhanced luminescence in transparent glass ceramics containing BaYF5: Ce3+ nanocrystals , 2012 .

[7]  D. Ding,et al.  Investigation on the influence of cerium doping form on the luminescence properties of Lu0.8Sc0.2BO3 scintillation crystals , 2012 .

[8]  Cai-Lin Wang,et al.  Rare-earth Activated Glass and Glass-Ceramic for Neutron Detection , 2012 .

[9]  Danping Chen,et al.  Luminescence and scintillation of Ce3+‐doped oxide glass with high Gd2O3 concentration , 2011 .

[10]  M. Stutzmann 1961–2011: Celebrating the 50th Anniversary of physica status solidi ! , 2011 .

[11]  M. Berkowski,et al.  The Czochralski Growth of (Lu1−xGdx)2SiO5:Dy Single Crystals: Structural, Optical, and Dielectric Characterization , 2010 .

[12]  Guorong Chen,et al.  Luminescence Behaviors of Ce3+ Ions in Chalcohalide Glasses , 2010 .

[13]  G. Han,et al.  Reduction of Eu3+ to Eu2+ in Aluminoborosilicate Glasses Prepared in Air , 2008 .

[14]  J. M. Parker,et al.  Eu3+-activated heavy scintillating glasses , 2008 .

[15]  Norberto Chiodini,et al.  Insights into microstructural features governing Ce3+ luminescence efficiency in sol-gel silica glasses , 2006 .

[16]  K. Morinaga,et al.  Compositional dependence of ultraviolet fluorescence intensity of Ce3+ in silicate, borate, and phosphate glasses , 2005 .

[17]  B. Ravel,et al.  ATHENA and ARTEMIS: interactive graphical data analysis using IFEFFIT , 2005 .

[18]  L. Qin,et al.  Scintillation characteristics of lutetium oxyorthosilicate (Lu2SiO5:Ce) crystals doped with cerium ions , 2004 .

[19]  Fuxi Gan,et al.  Radioluminescence of Ce3+-doped B2O3–SiO2–Gd2O3–BaO glass , 2004 .

[20]  Mingying Peng,et al.  The reduction of Eu3+ to Eu2+ in BaMgSiO4∶Eu prepared in air and the luminescence of BaMgSiO4∶Eu2+ phosphor , 2003 .

[21]  Martin Nikl,et al.  Efficient radioluminescence of the Ce3+-doped Na–Gd phosphate glasses , 2000 .

[22]  P. Hobson,et al.  Optical and physical characteristics of HBLAN fluoride glasses containing cerium , 1999 .

[23]  Steve W. Martin,et al.  New high-density fluoride glasses doped with CeF3 , 1995 .

[24]  Bianconi,et al.  Specific intermediate-valence state of insulating 4f compounds detected by L3 x-ray absorption. , 1987, Physical review. B, Condensed matter.

[25]  M. Ingram,et al.  An interpretation of glass chemistry in terms of the optical basicity concept , 1976 .