Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer

Photonics is the platform of choice to build a modular, easy-to-network quantum computer operating at room temperature. However, no concrete architecture has been presented so far that exploits both the advantages of qubits encoded into states of light and the modern tools for their generation. Here we propose such a design for a scalable and fault-tolerant photonic quantum computer informed by the latest developments in theory and technology. Central to our architecture is the generation and manipulation of three-dimensional hybrid resource states comprising both bosonic qubits and squeezed vacuum states. The proposal enables exploiting state-of-the-art procedures for the non-deterministic generation of bosonic qubits combined with the strengths of continuous-variable quantum computation, namely the implementation of Clifford gates using easy-to-generate squeezed states. Moreover, the architecture is based on two-dimensional integrated photonic chips used to produce a qubit cluster state in one temporal and two spatial dimensions. By reducing the experimental challenges as compared to existing architectures and by enabling room-temperature quantum computation, our design opens the door to scalable fabrication and operation, which may allow photonics to leap-frog other platforms on the path to a quantum computer with millions of qubits.

[1]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[2]  Nicolas J. Cerf,et al.  Conditional generation of arbitrary single-mode quantum states of light by repeated photon subtractions , 2005 .

[3]  Andrew W. Cross,et al.  Fault-tolerant preparation of approximate GKP states , 2019, New Journal of Physics.

[4]  Alastair Kay,et al.  Tutorial on the Quantikz Package , 2018, 1809.03842.

[5]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[6]  N. C. Menicucci,et al.  Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. , 2013, Physical review letters.

[7]  N. Killoran,et al.  Strawberry Fields: A Software Platform for Photonic Quantum Computing , 2018, Quantum.

[8]  G. J. Milburn,et al.  Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping , 1998, quant-ph/9809037.

[9]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[10]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  John Preskill,et al.  Accuracy threshold for postselected quantum computation , 2007, Quantum Inf. Comput..

[12]  Barbara M. Terhal,et al.  Towards Scalable Bosonic Quantum Error Correction , 2020 .

[13]  U. Andersen,et al.  Architecture and noise analysis of continuous-variable quantum gates using two-dimensional cluster states , 2020, 2005.13513.

[14]  Rafael N. Alexander,et al.  Continuous-variable gate teleportation and bosonic-code error correction , 2020, Physical Review A.

[15]  M B Plenio,et al.  Proposal for Quantum Simulation via All-Optically-Generated Tensor Network States. , 2017, Physical review letters.

[16]  Yu Shiozawa,et al.  Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing , 2016, 1606.06688.

[17]  I. Sagnes,et al.  Active demultiplexing of single photons from a solid‐state source , 2016, 1611.02294.

[18]  Barbara M. Terhal,et al.  Generating grid states from Schrödinger-cat states without postselection , 2017, 1709.08580.

[19]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[20]  Austin G. Fowler,et al.  Upper bound for loss in practical topological-cluster-state quantum computing , 2014 .

[21]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[22]  Koen Bertels,et al.  Decoding small surface codes with feedforward neural networks , 2017, 1705.00857.

[23]  Akira Furusawa,et al.  Demonstration of a quantum nondemolition sum gate. , 2008, Physical review letters.

[24]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[25]  Ben Q. Baragiola,et al.  Quantum Computing with Rotation-Symmetric Bosonic Codes , 2019, Physical Review X.

[26]  Cubic phase gates are not suitable for non-Clifford operations on GKP states , 2020, 2009.05309.

[27]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[28]  Benjamin J. Brown,et al.  Poking holes and cutting corners to achieve Clifford gates with the surface code , 2016, 1609.04673.

[29]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[30]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[31]  Nicolas Delfosse,et al.  Almost-linear time decoding algorithm for topological codes , 2017, Quantum.

[32]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[33]  Nicolas C. Menicucci,et al.  Encoding qubits into oscillators with atomic ensembles and squeezed light , 2017, 1703.02107.

[34]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[35]  Nicolas C. Menicucci,et al.  Modular Bosonic Subsystem Codes. , 2019, Physical review letters.

[36]  L. Pryadko,et al.  Fault tolerance of quantum low-density parity check codes with sublinear distance scaling , 2013 .

[37]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[38]  N. C. Menicucci,et al.  Quantum Computing with Continuous-Variable Clusters , 2009, 0903.3233.

[39]  Christian Weedbrook,et al.  Implementing quantum algorithms on temporal photonic cluster states , 2018, Physical Review A.

[40]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[41]  L. Zatti,et al.  Single-mode quadrature squeezing using dual-pump four-wave mixing in an integrated nanophotonic device , 2020 .

[42]  Jeongwan Haah,et al.  Distillation with Sublogarithmic Overhead. , 2017, Physical review letters.

[43]  Simon J. Devitt,et al.  Lattice surgery on the Raussendorf lattice , 2017, Quantum Science and Technology.

[44]  Austin G. Fowler,et al.  Topological cluster state quantum computing , 2008, Quantum Inf. Comput..

[45]  David Poulin,et al.  Fault-Tolerant Quantum Error Correction for non-Abelian Anyons , 2016, Communications in Mathematical Physics.

[46]  J. Eisert,et al.  Cellular automaton decoders of topological quantum memories in the fault tolerant setting , 2015, 1511.05579.

[47]  Radim Filip,et al.  Measurement-induced continuous-variable quantum interactions , 2005 .

[48]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[49]  Austin G. Fowler,et al.  Threshold error rates for the toric and planar codes , 2010, Quantum Inf. Comput..

[50]  Earl T. Campbell,et al.  Fast decoders for qudit topological codes , 2013, 1311.4895.

[51]  Daniel Litinski,et al.  A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery , 2018, Quantum.

[52]  A. Cho IBM promises 1000-qubit quantum computer—a milestone—by 2023 , 2020, Science.

[53]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[54]  Xueshi Guo,et al.  Deterministic generation of a two-dimensional cluster state , 2019, Science.

[55]  University of Michigan,et al.  Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices , 1998 .

[56]  Giacomo Torlai,et al.  Neural Decoder for Topological Codes. , 2016, Physical review letters.

[57]  Christoph Buchheim,et al.  Ellipsoid Bounds for Convex Quadratic Integer Programming , 2015, SIAM J. Optim..

[58]  Kosuke Fukui High-threshold fault-tolerant quantum computation with the GKP qubit and realistically noisy devices , 2019 .

[59]  Shota Yokoyama,et al.  Demonstration of a controlled-phase gate for continuous-variable one-way quantum computation. , 2011, Physical review letters.

[60]  R. Raussendorf,et al.  Long-range quantum entanglement in noisy cluster states (6 pages) , 2004, quant-ph/0407255.

[61]  T. Ralph,et al.  Coherent state topological cluster state production , 2011, 1101.5496.

[62]  Earl T. Campbell,et al.  Cellular-automaton decoders for topological quantum memories , 2014, npj Quantum Information.

[63]  T. Gerrits,et al.  Detector-Agnostic Phase-Space Distributions. , 2019, Physical review letters.

[64]  Warit Asavanant,et al.  Time-Domain Multiplexed 2-Dimensional Cluster State : Universal Quantum Computing Platform , 2019 .

[65]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[66]  Warit Asavanant,et al.  Generation of time-domain-multiplexed two-dimensional cluster state , 2019, Science.

[67]  M. Koashi,et al.  Equivalence of approximate Gottesman-Kitaev-Preskill codes , 2019, 1910.08301.

[68]  Hector Bombin,et al.  2D quantum computation with 3D topological codes , 2018, 1810.09571.

[69]  A. Lita,et al.  Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device , 2019, Science Advances.

[70]  Daniel Gottesman,et al.  Fault-tolerant quantum computation with constant overhead , 2013, Quantum Inf. Comput..

[71]  Victor V. Albert,et al.  Dynamically protected cat-qubits: a new paradigm for universal quantum computation , 2013, 1312.2017.

[72]  Hector Bombin,et al.  Transversal gates and error propagation in 3D topological codes , 2018, 1810.09575.

[73]  S. Glancy,et al.  All-optical generation of states for "Encoding a qubit in an oscillator". , 2010, Optics letters.

[74]  Nicolas C. Menicucci,et al.  Progress towards practical qubit computation using approximate Gottesman-Kitaev-Preskill codes , 2019, Physical Review A.

[75]  Matteo G. A. Paris,et al.  Displacement operator by beam splitter , 1996 .

[76]  John Preskill,et al.  Fault-tolerant quantum computation against biased noise , 2007, 0710.1301.

[77]  L. G. Helt,et al.  Simulating realistic non-Gaussian state preparation , 2019, Physical Review A.

[78]  Stephen D Bartlett,et al.  Ultrahigh Error Threshold for Surface Codes with Biased Noise. , 2017, Physical review letters.

[79]  S. Lloyd,et al.  Majorization theory approach to the Gaussian channel minimum entropy conjecture. , 2011, Physical review letters.

[80]  Rafael N. Alexander,et al.  One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator , 2015, 1509.00484.

[81]  Daiqin Su,et al.  Conversion of Gaussian states to non-Gaussian states using photon-number-resolving detectors , 2019, Physical Review A.

[82]  L. Knoll,et al.  GENERATION OF ARBITRARY QUANTUM STATES OF TRAVELING FIELDS , 1999 .

[83]  R. Raussendorf,et al.  A fault-tolerant one-way quantum computer , 2005, quant-ph/0510135.

[84]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[85]  A. Doherty,et al.  Thresholds for topological codes in the presence of loss. , 2009, Physical review letters.

[86]  Dmitri Maslov,et al.  Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits , 2012, Physical review letters.

[87]  Benjamin J. Brown,et al.  Universal fault-tolerant measurement-based quantum computation , 2018, Physical Review Research.

[88]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[89]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[90]  Damien Bonneau,et al.  Effect of loss on multiplexed single-photon sources , 2014, 1409.5341.

[91]  Margret Heinze,et al.  Enhanced noise resilience of the surface–Gottesman-Kitaev-Preskill code via designed bias , 2020 .

[92]  Hall,et al.  Gaussian noise and quantum-optical communication. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[93]  Dmitri Maslov,et al.  Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[94]  Josh Izaac,et al.  Production of photonic universal quantum gates enhanced by machine learning , 2019, Physical Review A.

[95]  E. Knill Non-binary unitary error bases and quantum codes , 1996, quant-ph/9608048.

[96]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[97]  T. M. Stace,et al.  Foliated Quantum Error-Correcting Codes. , 2016, Physical review letters.

[98]  Omar Fawzi,et al.  Constant Overhead Quantum Fault-Tolerance with Quantum Expander Codes , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[99]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[100]  Kae Nemoto,et al.  Efficient classical simulation of continuous variable quantum information processes. , 2002, Physical review letters.

[101]  Hidehiro Yonezawa,et al.  Implementation of a quantum cubic gate by an adaptive non-Gaussian measurement , 2015, 1507.08782.

[102]  Nicolas C. Menicucci,et al.  Weaving quantum optical frequency combs into continuous-variable hypercubic cluster states , 2013, 1309.4105.

[103]  W. Kolthammer,et al.  Tensor network states in time-bin quantum optics , 2017, Physical Review A.

[104]  Austin G. Fowler,et al.  Quantum computing with nearest neighbor interactions and error rates over 1 , 2010, 1009.3686.

[105]  Shota Yokoyama,et al.  Universal quantum computation with temporal-mode bilayer square lattices , 2017, 1711.08782.

[106]  Nicolas C. Menicucci,et al.  Detecting topological entanglement entropy in a lattice of quantum harmonic oscillators , 2014 .

[107]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[108]  Warit Asavanant,et al.  Temporal-mode continuous-variable three-dimensional cluster state for topologically protected measurement-based quantum computation , 2020, Physical Review A.

[109]  H. Bombin,et al.  Topological order with a twist: Ising anyons from an Abelian model. , 2010, Physical review letters.

[110]  Liang Jiang,et al.  Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes , 2018, IEEE Transactions on Information Theory.

[111]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[112]  David Poulin,et al.  Fault-tolerant renormalization group decoder for abelian topological codes , 2013, Quantum Inf. Comput..

[113]  Shuai Liu,et al.  Quantum-Computing Architecture based on Large-Scale Multi-Dimensional Continuous-Variable Cluster States in a Scalable Photonic Platform , 2019 .

[114]  James R. Wootton,et al.  Efficient Markov chain Monte Carlo algorithm for the surface code , 2013, 1302.2669.

[115]  Earl T. Campbell,et al.  An efficient quantum compiler that reduces T count , 2017, Quantum Science and Technology.

[116]  Seth Lloyd,et al.  Quantum Computation over Continuous Variables , 1999 .

[117]  Krishna Kumar Sabapathy,et al.  Robustness of non-Gaussian entanglement against noisy amplifier and attenuator environments. , 2011, Physical review letters.

[118]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[119]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[120]  Daniel Litinski,et al.  Quantum computing with Majorana fermion codes , 2018, 1801.08143.

[121]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[122]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[123]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[124]  Earl T. Campbell,et al.  Decoding across the quantum low-density parity-check code landscape , 2020, Physical Review Research.

[125]  E. Knill,et al.  Error analysis for encoding a qubit in an oscillator (5 pages) , 2005, quant-ph/0510107.

[126]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[127]  Liang Jiang,et al.  New class of quantum error-correcting codes for a bosonic mode , 2016, 1602.00008.

[128]  Mercedes Gimeno-Segovia,et al.  Fault-tolerant quantum computation with nondeterministic entangling gates , 2017, 1708.05627.

[129]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[130]  Kyungjoo Noh,et al.  Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code , 2019, Physical Review A.

[131]  R. Simon,et al.  Operator-sum representation for bosonic Gaussian channels , 2010, 1012.4266.

[132]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[133]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[134]  James R. Wootton,et al.  High threshold error correction for the surface code. , 2012, Physical review letters.

[135]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[136]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[137]  Martin Suchara,et al.  Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.

[138]  S. Bravyi,et al.  Quantum self-correction in the 3D cubic code model. , 2013, Physical review letters.

[139]  A. Holevo,et al.  One-mode bosonic Gaussian channels: a full weak-degradability classification , 2006, quant-ph/0609013.

[140]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[141]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[142]  Stefano Mancini,et al.  Generating continuous variable quantum codewords in the near-field atomic lithography , 2005, quant-ph/0510053.

[143]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[144]  Rafael N. Alexander,et al.  All-Gaussian Universality and Fault Tolerance with the Gottesman-Kitaev-Preskill Code. , 2019, Physical review letters.

[145]  T.D. Vo,et al.  Integrated spatial multiplexing of heralded single-photon sources , 2013, Nature communications.

[146]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[147]  Austin G. Fowler,et al.  Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1) parallel time , 2013, Quantum Inf. Comput..

[148]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[149]  Stephen P. Boyd,et al.  A semidefinite programming method for integer convex quadratic minimization , 2015, Optimization Letters.

[150]  Daniel Litinski,et al.  Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes , 2017, 1709.02318.

[151]  Jeongwan Haah,et al.  Magic state distillation with low space overhead and optimal asymptotic input count , 2017, 1703.07847.

[152]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[153]  Panos Aliferis,et al.  Effective fault-tolerant quantum computation with slow measurements. , 2007, Physical review letters.

[154]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[155]  Michele Mosca,et al.  An algorithm for the T-count , 2013, Quantum Inf. Comput..

[156]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[157]  Olivier Pfister,et al.  Gottesman-Kitaev-Preskill state preparation by photon catalysis. , 2019, 1903.01925.

[158]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[159]  Simon J. Devitt,et al.  Optimization of lattice surgery is NP-hard , 2017, npj Quantum Information.

[160]  Ying Li,et al.  A magic state’s fidelity can be superior to the operations that created it , 2014, New Journal of Physics.

[161]  T. Gerrits,et al.  Tuning between photon-number and quadrature measurements with weak-field homodyne detection , 2019, Physical Review A.

[162]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[163]  Masato Koashi,et al.  Polylog-overhead highly fault-tolerant measurement-based quantum computation: all-Gaussian implementation with Gottesman-Kitaev-Preskill code , 2020, 2006.05416.

[164]  Victor V. Albert,et al.  Performance and structure of single-mode bosonic codes , 2017, 1708.05010.

[165]  Naomi H. Nickerson,et al.  Measurement based fault tolerance beyond foliation , 2018, 1810.09621.

[166]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[167]  Yang Wang,et al.  Quantum error correction with the toric Gottesman-Kitaev-Preskill code , 2019, Physical Review A.

[168]  Karsten Danzmann,et al.  Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. , 2016, Physical review letters.

[169]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[170]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[171]  Jeongwan Haah,et al.  Codes and Protocols for Distilling T, controlled-S, and Toffoli Gates , 2017, Quantum.

[172]  T. Ralph,et al.  Fault-tolerant linear optical quantum computing with small-amplitude coherent States. , 2007, Physical review letters.

[173]  Pavel Panteleev,et al.  Degenerate Quantum LDPC Codes With Good Finite Length Performance , 2019, Quantum.

[174]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[175]  J. Harrington,et al.  Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes , 2004 .

[176]  Atsushi Okamoto,et al.  High-threshold fault-tolerant quantum computation with analog quantum error correction , 2017, 1712.00294.

[177]  Mazyar Mirrahimi,et al.  Hardware-efficient autonomous quantum memory protection. , 2012, Physical review letters.

[178]  Olivier Pfister,et al.  Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. , 2013, Physical review letters.

[179]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.