Small Kerr-anti-de Sitter black holes are unstable

Superradiance in black hole spacetimes can trigger instabilities. Here we show that, due to superradiance, small Kerr-anti-de Sitter black holes are unstable. Our demonstration uses a matching procedure, in a long wavelength approximation.

[1]  V. Cardoso,et al.  The black hole bomb and superradiant instabilities , 2004, hep-th/0404096.

[2]  V. Cardoso,et al.  Quasinormal frequencies of Schwarzschild black holes in anti–de Sitter spacetimes: A complete study of the overtone asymptotic behavior , 2003, gr-qc/0305037.

[3]  E. Berti,et al.  Quasinormal modes of Reissner-Nordstrom-anti-de Sitter black holes: Scalar, electromagnetic and gravitational perturbations , 2003, gr-qc/0301052.

[4]  James P. Norman,et al.  Gravitational quasinormal modes for anti-de Sitter black holes , 2002, gr-qc/0201016.

[5]  V. Cardoso,et al.  Quasinormal modes of Schwarzschild anti-de Sitter black holes: Electromagnetic and gravitational perturbations , 2001 .

[6]  V. Hubeny,et al.  Quasinormal modes of AdS black holes and the approach to thermal equilibrium , 1999, hep-th/9909056.

[7]  S. Hawking,et al.  Charged and rotating AdS black holes and their CFT duals , 1999, hep-th/9908109.

[8]  J. Maldacena,et al.  Universal low-energy dynamics for rotating black holes , 1997, hep-th/9702015.

[9]  E. Seidel A Comment on the Eigenvalues of Spin Weighted Spheroidal Functions , 1989 .

[10]  C. Manogue The Klein paradox and superradiance , 1988 .

[11]  H. Reiss Quantum Electrodynamics of Strong Fields , 1986 .

[12]  C. Lütken,et al.  Propagators and effective potentials in anti-de Sitter space , 1985 .

[13]  J. Reinhardt,et al.  Quantum electrodynamics of strong fields , 1985 .

[14]  S. Detweiler KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES , 1980 .

[15]  C. Isham,et al.  Quantum field theory in anti-de Sitter space-time , 1978 .

[16]  W. Unruh Absorption Cross-Section of Small Black Holes , 1976 .

[17]  J. Ipser,et al.  Solution of the scalar wave equation in a kerr background by separation of variables , 1972 .

[18]  S. Teukolsky ROTATING BLACK HOLES: SEPARABLE WAVE EQUATIONS FOR GRAVITATIONAL AND ELECTROMAGNETIC PERTURBATIONS. , 1972 .

[19]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[20]  W. Press,et al.  Floating Orbits, Superradiant Scattering and the Black-hole Bomb , 1972, Nature.

[21]  B. Carter Hamilton-Jacobi and Schrodinger Separable Solutions of Einstein’s Equations , 1968 .

[22]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[23]  John Archibald Wheeler,et al.  Stability of a Schwarzschild singularity , 1957 .