Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications.

Residue-specific incorporation of non-canonical amino acids into proteins allows facile alteration and enhancement of protein properties. In this review, we describe recent technical developments and applications of residue-specific incorporation to problems ranging from elucidation of biochemical mechanisms to engineering of protein-based biomaterials. We hope to inform the reader of the ease and broad utility of residue-specific non-canonical amino acid incorporation with the goal of inspiring investigators outside the field to consider applying this tool to their own research.

[1]  P G Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[2]  C. D. de Koster,et al.  Selective enrichment of azide-containing peptides from complex mixtures. , 2009, Journal of proteome research.

[3]  T. Yoo,et al.  High-throughput screening for methionyl-tRNA synthetases that enable residue-specific incorporation of noncanonical amino acids into recombinant proteins in bacterial cells. , 2007, Angewandte Chemie.

[4]  Nediljko Budisa,et al.  Azatryptophans endow proteins with intrinsic blue fluorescence , 2008, Proceedings of the National Academy of Sciences.

[5]  S. Deo,et al.  Red fluorescent protein variants with incorporated non-natural amino acid analogues. , 2008, Protein engineering, design & selection : PEDS.

[6]  Wim E Hennink,et al.  Nonnatural amino acids for site-specific protein conjugation. , 2009, Bioconjugate chemistry.

[7]  J. Bae,et al.  Synthetic Biology of Proteins: Tuning GFPs Folding and Stability with Fluoroproline , 2008, PloS one.

[8]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[9]  J. V. van Hest,et al.  Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition. , 2010, Chemical communications.

[10]  P. Schultz,et al.  Beyond the Canonical 20 Amino Acids: Expanding the Genetic Lexicon* , 2010, The Journal of Biological Chemistry.

[11]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[12]  Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition. , 2010, Chemical communications.

[13]  Christian Franck,et al.  Mechanically Tunable Thin Films of Photosensitive Artificial Proteins: Preparation and Characterization by Nanoindentation , 2008 .

[14]  Jennifer A. Prescher,et al.  Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids , 2006, Proceedings of the National Academy of Sciences.

[15]  B. G. Davis,et al.  Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. , 2008, Journal of the American Chemical Society.

[16]  J. Montclare,et al.  Incorporation of unnatural amino acids for synthetic biology. , 2010, Molecular bioSystems.

[17]  Jason W. Chin,et al.  Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome , 2010, Nature.

[18]  E. Schuman,et al.  Cell-selective metabolic labeling of proteins. , 2009, Nature chemical biology.

[19]  D. Tirrell,et al.  Introduction of an Aliphatic Ketone into Recombinant Proteins in a Bacterial Strain that Overexpresses an Editing‐Impaired Leucyl‐tRNA Synthetase , 2009, Chembiochem : a European journal of chemical biology.

[20]  N. Budisa,et al.  Gold fluorescent annexin A5 as a novel apoptosis detection tool , 2009, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[21]  Krishna Kumar,et al.  Protein Engineering Using Noncanonical Amino Acids , 2009 .

[22]  Emmanuelle Schmitt,et al.  Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo , 2009, Proceedings of the National Academy of Sciences.

[23]  Kechun Zhang,et al.  Generation of Surface‐Bound Multicomponent Protein Gradients , 2009, Chembiochem : a European journal of chemical biology.

[24]  J. V. van Hest,et al.  Site-specific modification of Candida antarctica lipase B via residue-specific incorporation of a non-canonical amino acid. , 2008, Bioconjugate chemistry.

[25]  David A. Tirrell,et al.  Noncanonical Amino Acids in Protein Science and Engineering , 2009 .

[26]  N. Budisa,et al.  Blue Fluorescent Amino Acids as In Vivo Building Blocks for Proteins , 2010, Chembiochem : a European journal of chemical biology.

[27]  E. Gouaux,et al.  Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores , 2010, Proceedings of the National Academy of Sciences.

[28]  T. Yoo,et al.  Evolution of a fluorinated green fluorescent protein , 2007, Proceedings of the National Academy of Sciences.

[29]  David H Russell,et al.  A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. , 2010, Angewandte Chemie.

[30]  B. G. Davis,et al.  Olefin Metathesis for Site‐Selective Protein Modification , 2009, Chembiochem : a European journal of chemical biology.

[31]  Duane E. Prasuhn,et al.  Unnatural amino acid incorporation into virus-like particles. , 2008, Bioconjugate chemistry.

[32]  D. Tirrell,et al.  Two-color labeling of temporally defined protein populations in mammalian cells. , 2008, Bioorganic & medicinal chemistry letters.

[33]  Mingzi M. Zhang,et al.  Tandem fluorescence imaging of dynamic S-acylation and protein turnover , 2010, Proceedings of the National Academy of Sciences.

[34]  David A. Tirrell,et al.  Expanding the Scope of Protein Biosynthesis by Altering the Methionyl‐tRNA Synthetase Activity of a Bacterial Expression Host , 2000 .

[35]  Robert Huber,et al.  Expansion of the genetic code enables design of a novel "gold" class of green fluorescent proteins. , 2003, Journal of molecular biology.

[36]  R. Huber,et al.  Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein , 2009, Proceedings of the National Academy of Sciences.

[37]  E. Schuman,et al.  In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons , 2010, Nature Neuroscience.

[38]  G. Ravichandran,et al.  Lithographic patterning of photoreactive cell-adhesive proteins. , 2007, Journal of the American Chemical Society.

[39]  Daniela C Dieterich,et al.  Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Munier,et al.  Incorporation d'analogues structuraux d'aminoacides dans les protéines bactériennes☆ , 1956 .

[41]  John G. Flanagan,et al.  Transmembrane Receptor DCC Associates with Protein Synthesis Machinery and Regulates Translation , 2010, Cell.

[42]  R. Raines,et al.  Stereoelectronic and steric effects in side chains preorganize a protein main chain , 2009, Proceedings of the National Academy of Sciences.

[43]  A. J. Link,et al.  A single genomic copy of an engineered methionyl-tRNA synthetase enables robust incorporation of azidonorleucine into recombinant proteins in E. coli. , 2009, Journal of the American Chemical Society.

[44]  E. Schuman,et al.  Fluorescence visualization of newly synthesized proteins in mammalian cells. , 2006, Angewandte Chemie.

[45]  Duane E. Prasuhn,et al.  Plasma clearance of bacteriophage Qbeta particles as a function of surface charge. , 2008, Journal of the American Chemical Society.

[46]  Henry A. Lester,et al.  Nicotine Binding to Brain Receptors Requires a Strong Cation-π Interaction , 2009, Nature.

[47]  G. Cohen,et al.  [Incorporation of structural analogues of amino acids in bacterial proteins]. , 1956, Biochimica et biophysica acta.

[48]  J. V. van Hest,et al.  "Clickable" elastins: elastin-like polypeptides functionalized with azide or alkyne groups. , 2009, Chemical communications.