Direct calculation of critical points in parameter sensitive systems

At critical points along the equilibrium path, sudden and sometimes catastrophic changes in the structural behaviour are observed. The equilibrium path, load-bearing capacity and locations of critical points can be sensitive to variations in parameters, such as geometrical imperfections, multi-parameter loadings, temperature and material properties. This paper introduces an incremental-iterative procedure to directly calculate the critical load for parameterized elastic structures. A modified Newton's method is proposed to simultaneously set the residual force and the minimum eigenvalue of the tangent stiffness matrix to zero by using an iterative algorithm. To demonstrate the performance of this method, numerical examples are presented.

[1]  Chahngmin Cho,et al.  Stability analysis using a geometrically nonlinear assumed strain solid shell element model , 1998 .

[2]  P. G. Bergan,et al.  Solution algorithms for nonlinear structural problems , 1980 .

[3]  Ginevra Salerno,et al.  Finite element asymptotic analysis of slender elastic structures: A simple approach , 1992 .

[4]  Ekkehard Ramm,et al.  Strategies for Tracing the Nonlinear Response Near Limit Points , 1981 .

[5]  Peter Wriggers,et al.  A quadratically convergent procedure for the calculation of stability points in finite element analysis , 1988 .

[6]  M. Crisfield An arc‐length method including line searches and accelerations , 1983 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Walter Wunderlich,et al.  Direct evaluation of the ‘worst’ imperfection shape in shell buckling , 1997 .

[9]  Steen Krenk,et al.  Non-linear Modeling and Analysis of Solids and Structures , 2009 .

[10]  M. Crisfield Non-Linear Finite Element Analysis of Solids and Structures, Essentials , 1997 .

[11]  Anders Eriksson,et al.  Equilibrium subsets for multi-parametric structural analysis , 1997 .

[12]  Makoto Ohsaki,et al.  Imperfection sensitivity of hilltop branching points of systems with dihedral group symmetry , 2005 .

[13]  Raffaele Casciaro,et al.  PERTURBATION APPROACH TO ELASTIC POST-BUCKLING ANALYSIS , 1998 .

[14]  M. A. Crisfield,et al.  Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics , 1997 .

[15]  Anders Eriksson,et al.  Fold lines for sensitivity analyses in structural instability , 1994 .

[16]  E. A. de Souza Neto,et al.  On the determination of the path direction for arc-length methods in the presence of bifurcations and `snap-backs' , 1999 .

[17]  S. Lopez Detection of bifurcation points along a curve traced by a continuation method , 2002 .

[18]  Evandro Parente,et al.  Tracing Nonlinear Equilibrium Paths of Structures Subjected to Thermal Loading , 2006 .

[19]  Makoto Ohsaki,et al.  Generalized sensitivity and probabilistic analysis of buckling loads of structures , 2007 .

[20]  Evandro Parente,et al.  On evaluation of shape sensitivities of non‐linear critical loads , 2003 .

[21]  Siegfried F. Stiemer,et al.  Improved arc length orthogonality methods for nonlinear finite element analysis , 1987 .

[22]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[23]  Baisheng Wu,et al.  Direct calculation of buckling strength of imperfect structures , 2000 .

[24]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[25]  Fumio Fujii,et al.  PINPOINTING BIFURCATION POINTS AND BRANCH-SWITCHING , 1997 .

[26]  Ilinca Stanciulescu,et al.  A lower bound on snap-through instability of curved beams under thermomechanical loads , 2012 .

[27]  Peter Wriggers,et al.  A general procedure for the direct computation of turning and bifurcation points , 1990 .

[28]  Evandro Parente,et al.  Design sensitivity analysis of nonlinear structures subjected to thermal loads , 2008 .

[29]  Baisheng Wu,et al.  A perturbation method for the determination of the buckling strength of imperfection-sensitive structures , 1997 .

[30]  Fumio Fujii,et al.  Modified stiffness iteration to pinpoint multiple bifurcation points , 2001 .

[31]  M. Ohsaki,et al.  Imperfection sensitivity of degenerate hilltop branching points , 2009 .

[32]  K. Murota,et al.  Improvement of the scaled corrector method for bifurcation analysis using symmetry-exploiting block-diagonalization , 2007 .

[33]  Steen Krenk,et al.  An orthogonal residual procedure for non‐linear finite element equations , 1995 .

[34]  M. Ohsaki,et al.  Design sensitivity analysis and optimization for nonlinear buckling of finite-dimensional elastic conservative structures , 2005 .

[35]  Giles W Hunt,et al.  A general theory of elastic stability , 1973 .

[36]  J. Hiriart-Urruty,et al.  Sensitivity analysis of all eigenvalues of a symmetric matrix , 1995 .

[37]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[38]  K. Huseyin,et al.  Nonlinear theory of elastic stability , 1975 .

[39]  Luis A. Godoy,et al.  Singular perturbations for sensitivity analysis in symmetric bifurcation buckling , 2001 .

[40]  Ingrid Svensson,et al.  Numerical treatment of complete load–deflection curves , 1998 .

[41]  B. Widjaja,et al.  Path-following technique based on residual energy suppression for nonlinear finite element analysis , 1998 .

[42]  Walter Wunderlich,et al.  Analysis and load carrying behaviour of imperfection sensitive shells , 1998 .

[43]  Raffaele Casciaro,et al.  Asymptotic post-buckling FEM analysis using corotational formulation , 2009 .

[44]  M. Tatar,et al.  Some Geometrical Bases for Incremental-Iterative Methods , 2009 .

[45]  George E. Blandford,et al.  Work-increment-control method for non-linear analysis , 1993 .

[46]  Jean-Marc Battini,et al.  Improved minimal augmentation procedure for the direct computation of critical points , 2003 .

[47]  H. R. Vejdani-Noghreiyan,et al.  Computation of multiple bifurcation point , 2006 .

[48]  Anders Eriksson,et al.  Numerical analysis of complex instability behaviour using incremental-iterative strategies , 1999 .

[49]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[50]  M. Kleiber,et al.  Parameter sensitivity of inelastic buckling and post-buckling response , 1997 .

[51]  K. K. Choong,et al.  A numerical strategy for computing the stability boundaries for multi-loading systems by using generalized inverse and continuation method , 2001 .

[52]  A. Eriksson Derivatives of tangential stiffness matrices for equilibrium path descriptions , 1991 .

[53]  Ekkehard Ramm,et al.  Computational bifurcation theory : path-tracing, pinpointing and path-switching , 1997 .