MICROARRAYDATANORMALIZATION: THE ART AND SCIENCE OF OVERCOMING TECHNrrCALVARLANCETONUUaNUZETHE DETECTION OF BIOLOGIC V ARLANCE

[1]  Aled M. Edwards,et al.  Unfolding of Microarray Data , 2002, J. Comput. Biol..

[2]  E. Wolski,et al.  Normalization strategies for cDNA microarrays. , 2000, Nucleic acids research.

[3]  Terence P. Speed,et al.  Normalization for cDNA microarry data , 2001, SPIE BiOS.

[4]  D. Slonim,et al.  Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls , 2001, Genome Biology.

[5]  T. Speed,et al.  Design issues for cDNA microarray experiments , 2002, Nature Reviews Genetics.

[6]  Samuel S. Wu,et al.  A statistical method for flagging weak spots improves normalization and ratio estimates in microarrays. , 2001, Physiological genomics.

[7]  Pierre R. Bushel,et al.  Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models , 2001, J. Comput. Biol..

[8]  J. Michael Cherry,et al.  Microarray data quality analysis: lessons from the AFGC project , 2004, Plant Molecular Biology.

[9]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Y. Benjamini,et al.  More powerful procedures for multiple significance testing. , 1990, Statistics in medicine.

[11]  S. Knudsen,et al.  A new non-linear normalization method for reducing variability in DNA microarray experiments , 2002, Genome Biology.

[12]  Jonathan Pevsner,et al.  Local mean normalization of microarray element signal intensities across an array surface: quality control and correction of spatially systematic artifacts. , 2002, BioTechniques.

[13]  Gary A. Churchill,et al.  Analysis of Variance for Gene Expression Microarray Data , 2000, J. Comput. Biol..