Advances in thermoacoustic engine and its application to pulse tube refrigeration

Thermoacoustically driven pulse tube refrigerator, a novel cryocooler without any moving components using heat energy as driving power, attracts much efforts from the researchers in the field of cryogenics and refrigeration in the past decades. After a short introduction of the history about thermoacoustics, we presented the key technology, followed by a detailed review on theoretical and experimental developments and advances of thermoacoustics. The prospective research emphases are also presented at the end of this review.

[1]  Guobang Chen,et al.  A 115 K thermoacoustically driven pulse tube refrigerator with low onset temperature , 2004 .

[2]  G. Swift Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators , 2017 .

[3]  Andrea Prosperetti,et al.  A nonlinear model of thermoacoustic devices. , 2002, The Journal of the Acoustical Society of America.

[4]  Ning Jiang,et al.  Optimum packing factor of the stack in a standing‐wave thermoacoustic prime mover , 2002 .

[5]  Mark F Hamilton,et al.  Nonlinear two-dimensional model for thermoacoustic engines. , 2002, The Journal of the Acoustical Society of America.

[6]  Guobang Chen,et al.  Influence of buffer on resonance frequency of thermoacoustic engine , 2002 .

[7]  Luo Ercang,et al.  Experimental Study on a Coaxial Traveling Wave Thermoacoustic Engine , 2002 .

[8]  Tao Jin,et al.  A thermoacoustically driven pulse tube refrigerator capable of working below 120 K , 2001 .

[9]  Tetsushi Biwa,et al.  Work flow measurements in a thermoacoustic engine , 2001 .

[10]  G. Swift,et al.  A thermoacoustic-Stirling heat engine: detailed study , 2000, The Journal of the Acoustical Society of America.

[11]  Andrea Prosperetti,et al.  Nonlinear saturation of the thermoacoustic instability , 1999, The Journal of the Acoustical Society of America.

[12]  Scott Backhaus,et al.  The Power of Sound , 2000, American Scientist.

[13]  Tao Jin,et al.  Experimental investigation on the onset and damping behavior of the oscillation in a thermoacoustic prime mover , 1999 .

[14]  G. Swift,et al.  A thermoacoustic Stirling heat engine , 1999, Nature.

[15]  Scott Backhaus,et al.  Acoustic recovery of lost power in pulse tube refrigerators , 1999 .

[16]  M. Dah Theory and nonlinearity of thermoacoustics , 1999 .

[17]  T. Yazaki,et al.  TRAVELING WAVE THERMOACOUSTIC ENGINE IN A LOOPED TUBE , 1998 .

[18]  Ashok Gopinath,et al.  Thermoacoustic streaming in a resonant channel: The time-averaged temperature distribution , 1998 .

[19]  Steven L. Garrett,et al.  Solar/heat‐driven thermoacoustic engine , 1998 .

[20]  Guobang Chen,et al.  Experimental Study on a Thermoacoustic Engine with Brass Screen Stack Matrix , 1998 .

[21]  Shuliang Zhou,et al.  Experimental Research of Thermoacoustic Prime Mover , 1997 .

[22]  G. W. Swift,et al.  Acoustic streaming in pulse tube refrigerators: tapered pulse tubes , 1997 .

[23]  Andrea Prosperetti,et al.  A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part I. Model and linear theory , 1997 .

[24]  Andrea Prosperetti,et al.  A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part II. Nonlinear oscillations , 1997 .

[25]  D. Gedeon DC Gas Flows in Stirling and Pulse Tube Cryocoolers , 1997 .

[26]  Luc Bauwens,et al.  Oscillating flow of a heat-conducting fluid in a narrow tube , 1996, Journal of Fluid Mechanics.

[27]  Gregory W. Swift,et al.  Simple harmonic analysis of regenerators , 1996 .

[28]  John J. Wollan,et al.  Thermoacoustic natural gas liquefier , 1995 .

[29]  Gregory W. Swift,et al.  DESIGN ENVIRONMENT FOR LOW-AMPLITUDE THERMOACOUSTIC ENGINES , 1994 .

[30]  Gregory W. Swift,et al.  Similitude in thermoacoustics , 1993 .

[31]  Gregory W. Swift,et al.  Analysis and performance of a large thermoacoustic engine , 1992 .

[32]  J. H. Xiao Thermoacoustic theory for cyclic flow regenerators. Part I: fundamentals , 1992 .

[33]  W. P. Arnott,et al.  Thermoacoustic engines , 1991, IEEE 1991 Ultrasonics Symposium,.

[34]  Ray Radebaugh,et al.  A review of pulse tube refrigeration , 1990 .

[35]  Peter H. Ceperley,et al.  Gain and efficiency of a short traveling wave heat engine , 1984 .

[36]  Nikolaus Rott,et al.  Thermally driven acoustic oscillations, Part VI: Excitation and power , 1983 .

[37]  Peter H. Ceperley,et al.  A pistonless Stirling engine—The traveling wave heat engine , 1979 .

[38]  Nikolaus Rott,et al.  Thermally driven acoustic oscillations, part V: Gas-liquid oscillations , 1976 .

[39]  Nikolaus Rott,et al.  Thermally driven acoustic oscillations, part IV: Tubes with variable cross-section , 1976 .

[40]  Nikolaus Rott,et al.  Thermally driven acoustic oscillations, part III: Second-order heat flux , 1975 .

[41]  Nikolaus Rott,et al.  Thermally driven acoustic oscillations. Part II: Stability limit for helium , 1973 .

[42]  Nikolaus Rott,et al.  Damped and thermally driven acoustic oscillations in wide and narrow tubes , 1969 .

[43]  K. T. Feldman,et al.  Review of the literature on Sondhauss thermoacoustic phenomena , 1968 .

[44]  K. T. Feldman,et al.  Review of the literature on Rijke thermoacoustic phenomena , 1968 .

[45]  Abbott A. Putnam,et al.  A Survey of Organ‐Pipe Oscillations in Combustion Systems , 1955 .

[46]  L. Rayleigh,et al.  The theory of sound , 1894 .