On I-acceleration convergence of sequences

In this article we introduce the notion of I-acceleration convergence of sequences. We prove the decomposition theorem for I-acceleration convergence of sequences as well as for subsequence transformations. We study different properties of I-acceleration convergence of sequences.

[1]  J. A. Fridy,et al.  Statistical limit superior and limit inferior , 1997 .

[2]  M. Sen,et al.  ON GENERALIZED STATISTICALLY CONVERGENT SEQUENCES , 2001 .

[3]  Bipan Hazarika,et al.  Paranorm I-convergent sequence spaces , 2009 .

[4]  Binod Chandra Tripathy,et al.  Matrix Transformation between Some Classes of Sequences , 1997 .

[5]  Hebert E. Salzer,et al.  A Simple Method for Summing Certain Slowly Convergent Series , 1954 .

[6]  J. Connor $R$-type summability methods, Cauchy criteria, $P$-sets and statistical convergence , 1992 .

[7]  I. J. Maddox,et al.  Matrix transformations between some classes of sequences , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  H. Fast,et al.  Sur la convergence statistique , 1951 .

[9]  W. Ford,et al.  Acceleration by subsequence transformations. , 1988 .

[10]  Binod Chandra Tripathy,et al.  I-convergent sequence spaces associated with multiplier sequences , 2008 .

[11]  I-limit superior and limit inferior , 2001 .

[12]  David A. Smith,et al.  Acceleration of linear and logarithmic convergence , 1979 .

[13]  Tibor Šalát,et al.  On statistically convergent sequences of real numbers , 1980 .

[14]  D. F. Dawson Matrix summability over certain classes of sequences ordered with respect to rate of convergence , 1968 .

[15]  I. J. Schoenberg The Integrability of Certain Functions and Related Summability Methods , 1959 .

[16]  C. Brezinski,et al.  Convergence Acceleration by Extraction of Linear Subsequences , 1983 .