On the numerical solution of a semilinear elliptic eigenproblem of Lane–Emden type, I: Problem formulation and description of the algorithms

In this first part of our two-part article, we present some theoretical background along with descriptions of some numerical techniques for solving a particular semilinear elliptic eigenproblem of Lane-Emden type on a triangular domain without any lines of symmetry. For solving the principal first eigenproblem, we describe an operator splitting method applied to the corresponding time-dependent problem. For solving higher eigenproblems, we describe an arclength continuation method applied to a particular perturbation of the original problem, which admits solution branches bifurcating from the trivial solution branch at eigenvalues of its linearization. We then solve the original eigenproblem by ‘jumping’ to a point on the unperturbed solution branch from a ‘nearby’ point on the corresponding continued perturbed branch, then normalizing the result. Finally, for comparison, we describe a particular implementation of Newton's method applied directly to the original constrained nonlinear eigenproblem.

[1]  H. Keller,et al.  Continuation-Conjugate Gradient Methods for the Least Squares Solution of Nonlinear Boundary Value Problems , 1985 .

[2]  R. Hoppe,et al.  Functional approach to a posteriori error estimation for elliptic optimal control problems with distributed control , 2007 .

[3]  Jacques-Louis Lions,et al.  Functional and variational methods , 1988 .

[4]  John M. Neuberger,et al.  Newton's Method and Morse Index for semilinear Elliptic PDEs , 2001, Int. J. Bifurc. Chaos.

[5]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[6]  Xudong Yao,et al.  Numerical Methods for Computing Nonlinear Eigenpairs: Part II. Non-Iso-Homogeneous Cases , 2008, SIAM J. Sci. Comput..

[7]  A. Castro,et al.  Upper estimates for the energy of solutions of nonhomogeneous boundary value problems , 2005 .

[8]  H. B. Keller Global Homotopies and Newton Methods , 1978 .

[9]  P. G. Ciarlet,et al.  Introduction to Numerical Linear Algebra and Optimisation , 1989 .

[10]  R. Glowinski,et al.  Neumann Control of Unstable Parabolic Systems: Numerical Approach , 1998 .

[11]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[12]  J. Ortega Matrix Theory: A Second Course , 1987 .

[13]  Jirí Horák,et al.  Constrained mountain pass algorithm for the numerical solution of semilinear elliptic problems , 2004, Numerische Mathematik.

[14]  W. Mccrea An Introduction to the Study of Stellar Structure , 1939, Nature.

[15]  A. Aftalion,et al.  Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains , 2004 .

[16]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[17]  Gabriella Bogn Finite element approximation of the rst eigenvalue of a nonlinear problem for some special domains , 2000 .

[18]  Henghui Zou On the effect of the domain geometry on uniqueness of positive solutions of $\Delta u + u^p = 0$ , 1994 .

[19]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[20]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[21]  Achim Wixforth,et al.  Numerical simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips , 2007 .

[22]  Roland Glowinski,et al.  On the numerical solution of a semilinear elliptic eigenproblem of Lane–Emden type, II: Numerical experiments , 2007, J. Num. Math..

[23]  Xudong Yao,et al.  Numerical Methods for Computing Nonlinear Eigenpairs: Part I. Iso-Homogeneous Cases , 2007, SIAM J. Sci. Comput..

[24]  P. Lions,et al.  On Pairs of Positive Solutions for a Class of Semilinear Elliptic Problems , 1985 .

[25]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .