On the tree-width of knot diagrams

We show that a small tree-decomposition of a knot diagram induces a small sphere-decomposition of the corresponding knot. This, in turn, implies that the knot admits a small essential planar meridional surface or a small bridge sphere. We use this to give the first examples of knots where any diagram has high tree-width. This answers a question of Burton and of Makowsky and Mari\~no.

[1]  Benjamin A. Burton,et al.  Courcelle's theorem for triangulations , 2014, J. Comb. Theory, Ser. A.

[2]  Michal Pilipczuk,et al.  Optimal Parameterized Algorithms for Planar Facility Location Problems Using Voronoi Diagrams , 2015, ESA.

[3]  Dror Bar-Natan FAST KHOVANOV HOMOLOGY COMPUTATIONS , 2006 .

[4]  Richard Hughes,et al.  Geometry and Topology of 3-manifolds , 2011 .

[5]  S. Schleimer,et al.  High distance knots , 2006, math/0607265.

[6]  Daniel Bienstock,et al.  On embedding graphs in trees , 1990, J. Comb. Theory, Ser. B.

[7]  Martin Scharlemann,et al.  Thin position for 3-manifolds , 1992 .

[8]  Martin Scharlemann,et al.  Lecture Notes on Generalized Heegaard Splittings , 2005, math/0504167.

[9]  David Gabai Foliations and the topology of 3-manifolds , 1983 .

[10]  Johann A. Makowsky,et al.  The parametrized complexity of knot polynomials , 2003, J. Comput. Syst. Sci..

[11]  D. Rolfsen Knots and Links , 2003 .

[12]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[13]  Maggy Tomova Distance of Heegaard splittings of knot complements , 2007, math/0703474.

[14]  Jessica S. Purcell,et al.  Treewidth, crushing and hyperbolic volume , 2018, Algebraic & Geometric Topology.

[15]  C. Hayashi,et al.  Thin position of a pair (3-manifold, 1-submanifold) , 2001 .

[16]  Jonathan Spreer,et al.  On the treewidth of triangulated 3-manifolds , 2017, SoCG.

[17]  Ian Agol,et al.  Small 3-Manifolds of Large Genus , 2002, math/0205091.

[18]  Y. Moriah,et al.  Bridge distance and plat projections , 2013, 1312.7093.

[19]  J. Hyam Rubinstein,et al.  Layered-triangulations of 3-manifolds , 2006, math/0603601.

[20]  Benjamin A. Burton The HOMFLY-PT polynomial is fixed-parameter tractable , 2017, SoCG.

[21]  C. Tsau Incompressible surfaces in the knot manifolds of torus knots , 1994 .

[22]  H. Schubert Über eine numerische Knoteninvariante , 1954 .