Limiting partial combinatory algebras

From every partial combinatory algebra A we construct another partial combinatory algebra a-lim(A). In a-lim(A), every representable partial numerical function φ(n) is exactly of the form limtζ(t, n) for some representable partial numerical function ζ(t, n) of A. The partial combinatory algebra a-lim(A) is a quotient of A by a partial equivalence relation, and is equipped with a limit structure in the sense that each element of a-lim(A) is the limit of a countable sequence of A-elements. In this paper, we discuss the limit structures for A in terms of Barendregt's range property (if the range of a combinator is finite, then it is a singleton). Moreover, we repeat the construction a-lim(-) transfinite times to interpret infinitary λ-calculi. Finally, we attempt to interpret type-free λµ-calculus by introducing another partial applicative structure which has an asynchronous application operator that allows a parallel limit operation.

[1]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[2]  Mariangiola Dezani-Ciancaglini,et al.  Infinite lambda-Calculus and Types , 1999, Theor. Comput. Sci..

[3]  Matthias Felleisen,et al.  Control operators, the SECD-machine, and the λ-calculus , 1987, Formal Description of Programming Concepts.

[4]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[5]  John R. Longley,et al.  Realizability toposes and language semantics , 1995 .

[6]  W. Tait Infinitely Long Terms of Transfinite Type , 1965 .

[7]  Susumu Hayashi,et al.  A LIMITING FIRST ORDER REALIZABILITY INTERPRETATION , 2002 .

[8]  H. R. Strong Algebraically generalized recursive function theory , 1968 .

[9]  Jan Willem Klop,et al.  Infinitary Lambda Calculus , 1997, Theoretical Computer Science.

[10]  Thomas Streicher,et al.  Classical logic, continuation semantics and abstract machines , 1998, Journal of Functional Programming.

[11]  Eric G. Wagner Uniformly reflexive structures: On the nature of gödelizations and relative computability , 1969 .

[12]  R. Soare Recursively enumerable sets and degrees , 1987 .

[13]  George Gratzer,et al.  Universal Algebra , 1979 .

[14]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[15]  Thierry Coquand,et al.  On the computational content of the axiom of choice , 1994, The Journal of Symbolic Logic.

[16]  Helmut Schwichtenberg,et al.  Infinite terms and recursion in higher types , 1975 .

[17]  Ken-etsu Fujita,et al.  On Proof Terms and Embeddings of Classical Substructural Logics , 1998, Stud Logica.