DNA-templated assembly of naphthalenediimide arrays.

π-Stacked naphthalenediimide (NDI) arrays are of interest as charge-transport materials. We have designed and synthesized an NDI derivative with two Zn(II)-cyclens that act as receptors for the thymine base in DNA. UV/Vis and CD spectroscopy, gel filtration, and molecular-modeling studies have shown that the bis(Zn(II)-cyclen)-NDI can be assembled in the presence of oligo-dT to form π-stacked NDI arrays. The assembly of the NDI arrays was found to be dependent on the length of the oligo-dT and the temperature. The NDI-oligo-dT assembly on a gold substrate exhibits photocurrent responses due to electron transfer through the π-stacked array.

[1]  J. Melinger,et al.  Supramolecular device for artificial photosynthetic mimics as helix-mediated antenna/reaction center ensemble. , 2008, Organic letters.

[2]  Amy L. Stevens,et al.  Directing energy transfer in discrete one-dimensional oligonucleotide-templated assemblies. , 2011, Chemical communications.

[3]  R. Häner,et al.  Nucleic acid-guided assembly of aromatic chromophores. , 2010, Chemical Society reviews.

[4]  Stefan Matile,et al.  Supramolecular n/p-heterojunction photosystems with antiparallel redox gradients in electron- and hole-transporting pathways. , 2010, Journal of the American Chemical Society.

[5]  Jurriaan Huskens,et al.  Ordered and oriented supramolecular n/p-heterojunction surface architectures: completion of the primary color collection. , 2009, Journal of the American Chemical Society.

[6]  C. Jaroniec,et al.  Amphiphilic self-assembly of an n-type nanotube. , 2010, Angewandte Chemie.

[7]  A. Facchetti,et al.  Organic n-channel field-effect transistors based on arylenediimide-thiophene derivatives. , 2010, Journal of the American Chemical Society.

[8]  M. R. Molla,et al.  Chiral induction by helical neighbour: spectroscopic visualization of macroscopic-interaction among self-sorted donor and acceptor π-stacks. , 2011, Chemical communications.

[9]  Sheshanath V. Bhosale,et al.  Photoproduction of Proton Gradients with π-Stacked Fluorophore Scaffolds in Lipid Bilayers , 2006, Science.

[10]  M. Porter,et al.  The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes , 1991 .

[11]  A. Bond,et al.  Highly selective and sensitive DNA assay based on electrocatalytic oxidation of ferrocene bearing zinc(II)-cyclen complexes with diethylamine. , 2010, Journal of the American Chemical Society.

[12]  Mitsunobu Nakamura,et al.  Conformational Changes of DNA by Photoirradiation of DNA-Bis(ZnII-Cyclen)-Azobenzene Complex , 2006, Nucleosides, nucleotides & nucleic acids.

[13]  E. W. Meijer,et al.  ssDNA templated self-assembly of chromophores. , 2007, Journal of the American Chemical Society.

[14]  H. Wagenknecht Helicale Anordnung von Porphyrinen entlang der DNA: auf dem Weg zu DNA-Nanoarchitekturen† , 2009 .

[15]  A. Schenning,et al.  Hydrogen-bonded Supramolecular π-Functional Materials† , 2011 .

[16]  R. Nolte,et al.  Electronic Transport Properties of Ensembles of Perylene‐Substituted Poly‐isocyanopeptide Arrays , 2008 .

[17]  M. Borkovec,et al.  Topologically matching supramolecular n/p-heterojunction architectures. , 2009, Angewandte Chemie.

[18]  Shelby Forrester Nelson,et al.  Thin-Film Morphology Control in Naphthalene-Diimide-Based Semiconductors: High Mobility n-Type Semiconductor for Organic Thin-Film Transistors , 2008 .

[19]  S. Aoki,et al.  New supramolecular trigonal prisms from zinc(II)– 1,4,7,10-tetraazacyclododecane (cyclen) complexes and trithiocyanurate in aqueous solution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  K. Nakanishi,et al.  Circular dichroic spectroscopy : exciton coupling in organic stereochemistry , 1983 .

[21]  E. Stulz,et al.  DNA as supramolecular scaffold for functional molecules: progress in DNA nanotechnology. , 2011, Chemical Society reviews.

[22]  E. W. Meijer,et al.  Supramolecular Organization of ssDNA‐Templated π‐Conjugated Oligomers via Hydrogen Bonding , 2009 .

[23]  M. Surin,et al.  Guanosine‐based Hydrogen‐bonded Scaffolds: Controlling the Assembly of Oligothiophenes , 2008 .

[24]  E. Kinoshita,et al.  A novel procedure for simple and efficient genotyping of single nucleotide polymorphisms by using the Zn2+-cyclen complex. , 2002, Nucleic acids research.

[25]  H. Wagenknecht Helical arrangement of porphyrins along DNA: towards photoactive DNA-based nanoarchitectures. , 2009, Angewandte Chemie.

[26]  E. Kimura,et al.  A new ternary zinc(II) complex with [12]aneN4 (=1,4,7,10-tetraazacyclododecane) and AZT (=3'-azido-3'-deoxythymidine). Highly selective recognition of thymidine and its related nucleosides by a zinc(II) macrocyclic tetraamine complex with novel complementary associations , 1993 .

[27]  E. Kimura,et al.  Macrocyclic metal complexes for selective recognition of nucleic acid bases and manipulation of gene expression , 1997 .

[28]  M. Garcia-Parajo,et al.  Investigation of perylene photonic wires by combined single-molecule fluorescence and atomic force microscopy. , 2004, Angewandte Chemie.

[29]  E. Kimura,et al.  Highly Selective Recognition of Thymidine Mono- and Diphosphate Nucleotides in Aqueous Solution by Ditopic Receptors Zinc(II)−Bis(cyclen) Complexes (Cyclen = 1,4,7,10-Tetraazacyclododecane) , 2000 .

[30]  E. W. Meijer,et al.  Molecular-level helical stack of a nucleotide-appended oligo(p-phenylenevinylene) directed by supramolecular self-assembly with a complementary oligonucleotide as a template. , 2006, Journal of the American Chemical Society.