A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14 C and CO 2 records: implications of data and model uncertainties

Abstract. Radiocarbon production, solar activity, total solar irradiance (TSI) and solar-induced climate change are reconstructed for the Holocene (10 to 0 kyr BP), and TSI is predicted for the next centuries. The IntCal09/SHCal04 radiocarbon and ice core CO2 records, reconstructions of the geomagnetic dipole, and instrumental data of solar activity are applied in the Bern3D-LPJ, a fully featured Earth system model of intermediate complexity including a 3-D dynamic ocean, ocean sediments, and a dynamic vegetation model, and in formulations linking radiocarbon production, the solar modulation potential, and TSI. Uncertainties are assessed using Monte Carlo simulations and bounding scenarios. Transient climate simulations span the past 21 thousand years, thereby considering the time lags and uncertainties associated with the last glacial termination. Our carbon-cycle-based modern estimate of radiocarbon production of 1.7 atoms cm−2 s−1 is lower than previously reported for the cosmogenic nuclide production model by Masarik and Beer (2009) and is more in-line with Kovaltsov et al. (2012). In contrast to earlier studies, periods of high solar activity were quite common not only in recent millennia, but throughout the Holocene. Notable deviations compared to earlier reconstructions are also found on decadal to centennial timescales. We show that earlier Holocene reconstructions, not accounting for the interhemispheric gradients in radiocarbon, are biased low. Solar activity is during 28% of the time higher than the modern average (650 MeV), but the absolute values remain weakly constrained due to uncertainties in the normalisation of the solar modulation to instrumental data. A recently published solar activity–TSI relationship yields small changes in Holocene TSI of the order of 1 W m−2 with a Maunder Minimum irradiance reduction of 0.85 ± 0.16 W m−2. Related solar-induced variations in global mean surface air temperature are simulated to be within 0.1 K. Autoregressive modelling suggests a declining trend of solar activity in the 21st century towards average Holocene conditions.

[1]  Y. Yokoyama,et al.  Atmospheric Δ14C reduction in simulations of Atlantic overturning circulation shutdown , 2013 .

[2]  S. K. Solanki,et al.  The AD775 cosmic event revisited: the Sun is to blame , 2013, 1302.6897.

[3]  F. Joos,et al.  Simulating atmospheric CO2, 13C and the marine carbon cycle during the Last Glacial–Interglacial cycle: possible role for a deepening of the mean remineralization depth and an increase in the oceanic nutrient inventory , 2012 .

[4]  Fortunat Joos,et al.  Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century , 2012 .

[5]  R. Neuhaeuser,et al.  A Galactic short gamma-ray burst as cause for the 14C peak in AD 774/5 , 2012, 1211.2584.

[6]  J. Andrews,et al.  Linking the 8.2 ka event and its freshwater forcing in the Labrador Sea , 2012 .

[7]  I. Usoskin,et al.  A new model of cosmogenic production of radiocarbon 14C in the atmosphere , 2012, 1206.6974.

[8]  Toshio Nakamura,et al.  A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan , 2012, Nature.

[9]  Mike Lockwood,et al.  Solar Influence on Global and Regional Climates , 2012, Surveys in Geophysics.

[10]  F. Joos,et al.  Carbon Isotope Constraints on the Deglacial CO2 Rise from Ice Cores , 2012, Science.

[11]  H. Oerter,et al.  9,400 years of cosmic radiation and solar activity from ice cores and tree rings , 2012, Proceedings of the National Academy of Sciences.

[12]  F. Joos,et al.  Toward explaining the Holocene carbon dioxide and carbon isotope records: Results from transient ocean carbon cycle-climate simulations , 2012 .

[13]  J. Russell,et al.  Global climate evolution during the last deglaciation , 2012, Proceedings of the National Academy of Sciences.

[14]  A. Burke,et al.  The Southern Ocean’s Role in Carbon Exchange During the Last Deglaciation , 2012, Science.

[15]  Catherine Constable,et al.  Reconstructing the Holocene geomagnetic field , 2011 .

[16]  E. Bard,et al.  An Antarctic view of Beryllium-10 and solar activity for the past millennium , 2011 .

[17]  V. Brovkin,et al.  Glacial CO2 cycle as a succession of key physical and biogeochemical processes , 2011 .

[18]  M. Lockwood,et al.  Centennial changes in the heliospheric magnetic field and open solar flux: The consensus view from geomagnetic data and cosmogenic isotopes and its implications , 2011 .

[19]  S. Solanki,et al.  Evolution of the solar irradiance during the Holocene , 2011, 1103.4958.

[20]  Carolus J. Schrijver,et al.  The minimal solar activity in 2008–2009 and its implications for long‐term climate modeling , 2011 .

[21]  E. Rozanov,et al.  A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing , 2011, 1102.4763.

[22]  G. Bazilevskaya,et al.  Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers , 2011 .

[23]  Caspar M. Ammann,et al.  Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0) , 2011 .

[24]  G. Kopp,et al.  A new, lower value of total solar irradiance: Evidence and climate significance , 2011 .

[25]  F. Joos,et al.  A Coupled Dynamical Ocean–Energy Balance Atmosphere Model for Paleoclimate Studies , 2011 .

[26]  W. Broecker,et al.  The Deglacial Evolution of North Atlantic Deep Convection , 2011, Science.

[27]  V. Brovkin,et al.  Last Glacial Maximum CO2 and δ13C successfully reconciled , 2011 .

[28]  G. Meehl,et al.  SOLAR INFLUENCES ON CLIMATE , 2010 .

[29]  Heinrich Widmann,et al.  Climate and carbon-cycle variability over the last millennium , 2010 .

[30]  F. Joos,et al.  Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO 2 rise , 2010 .

[31]  S. Lehman,et al.  The release of 14 C-depleted carbon from the deep ocean during the last deglaciation: Evidence from the Arabian Sea , 2010 .

[32]  J. Loisel,et al.  Global peatland dynamics since the Last Glacial Maximum , 2010 .

[33]  E. Michel,et al.  Ventilation of the Deep Southern Ocean and Deglacial CO2 Rise , 2010, Science.

[34]  L. Keigwin,et al.  No signature of abyssal carbon in intermediate waters off Chile during deglaciation , 2010 .

[35]  M. Lockwood Solar change and climate: an update in the light of the current exceptional solar minimum , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Fortunat Joos,et al.  Sensitivity of Holocene atmospheric CO 2 and the modern carbon budget to early human land use: analyses with a process-based model , 2010 .

[37]  B. Heber,et al.  On the importance of the local interstellar spectrum for the solar modulation parameter , 2010 .

[38]  Dennis A. Hansell,et al.  Dissolved Organic Matter in the Ocean: A Controversy Stimulates New Insights , 2009 .

[39]  Jean-Claude Dutay,et al.  Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum , 2009 .

[40]  C. Fröhlich,et al.  Total solar irradiance during the Holocene , 2009 .

[41]  F. Joos,et al.  Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core , 2009, Nature.

[42]  Jorge L. Sarmiento,et al.  The impact of remineralization depth on the air–sea carbon balance , 2009 .

[43]  J. Beer,et al.  An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere , 2009 .

[44]  J. Canadell,et al.  Soil organic carbon pools in the northern circumpolar permafrost region , 2009 .

[45]  E. Burke,et al.  Evidence of 6 000-Year Periodicity in Reconstructed Sunspot Numbers , 2009 .

[46]  Saleem H Ali,et al.  Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2 , 2009, Science.

[47]  F. Joos,et al.  How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model study , 2008 .

[48]  F. Joos,et al.  A modeling assessment of the interplay between aeolian iron fluxes and iron-binding ligands in controlling carbon dioxide fluctuations during Antarctic warm events , 2008 .

[49]  M. Fleisher,et al.  Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise of Atmospheric CO2 , 2008 .

[50]  U. Cubasch,et al.  Mid- to Late Holocene climate change: an overview , 2008 .

[51]  F. Joos,et al.  Modeled natural and excess radiocarbon: Sensitivities to the gas exchange formulation and ocean transport strength , 2008 .

[52]  M. Knudsen,et al.  Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr , 2008 .

[53]  M. Bigler,et al.  Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core , 2008, Nature.

[54]  B. Kromer,et al.  Tree rings and ice cores reveal C-14 calibration uncertainties during the Younger Dryas , 2008 .

[55]  F. Joos,et al.  Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years , 2008, Proceedings of the National Academy of Sciences.

[56]  B. Heber,et al.  Solar modulation during the Holocene , 2008 .

[57]  G. Fischer,et al.  Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity , 2008 .

[58]  V. Brovkin,et al.  Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry , 2007 .

[59]  G. Haug,et al.  Carbon dioxide release from the North Pacific abyss during the last deglaciation , 2007, Nature.

[60]  K. Matsumoto,et al.  Biology‐mediated temperature control on atmospheric pCO2 and ocean biogeochemistry , 2007 .

[61]  S. Lehman,et al.  Marine Radiocarbon Evidence for the Mechanism of Deglacial Atmospheric CO2 Rise , 2007, Science.

[62]  S. Solanki,et al.  Grand minima and maxima of solar activity: new observational constraints , 2007, 0706.0385.

[63]  C. Sweeney,et al.  Constraining global air‐sea gas exchange for CO2 with recent bomb 14C measurements , 2007 .

[64]  Takuro Kobashi,et al.  Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice , 2007 .

[65]  W. Broecker,et al.  A 190‰ drop in atmosphere's Δ14C during the “Mystery Interval” (17.5 to 14.5 kyr) , 2007 .

[66]  F. Joos,et al.  Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model , 2007, Proceedings of the National Academy of Sciences.

[67]  Christoph Heinze,et al.  Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model , 2006 .

[68]  F. Joos,et al.  Water mass distribution and ventilation time scales in a cost-efficient, three-dimensional ocean model , 2006 .

[69]  J. Beer,et al.  Large variations in Holocene solar activity: Constraints from 10Be in the Greenland Ice Core Project ice core , 2006 .

[70]  Paul Steele,et al.  Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP , 2006 .

[71]  M. Chapman,et al.  Surface and Deep Ocean Interactions During the Cold Climate Event 8200 Years Ago , 2006, Science.

[72]  T. Naegler,et al.  Closing the global radiocarbon budget 1945–2005 , 2006 .

[73]  N. Mahowald,et al.  Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates , 2006 .

[74]  R. Lundin,et al.  Long-term solar activity explored with wavelet methods , 2006 .

[75]  J. Randerson,et al.  Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air–sea gas transfer velocity , 2006 .

[76]  H. Fischer,et al.  Quantitative interpretation of atmospheric carbon records over the last glacial termination , 2005 .

[77]  H. Synal,et al.  Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C , 2005 .

[78]  F. Joos,et al.  Climate: How unusual is today's solar activity? , 2005, Nature.

[79]  J. Lean,et al.  Modeling the Sun’s Magnetic Field and Irradiance since 1713 , 2005 .

[80]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[81]  Robert Marsh,et al.  Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model , 2005 .

[82]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[83]  S. Solanki,et al.  Unusual activity of the Sun during recent decades compared to the previous 11,000 years , 2004, Nature.

[84]  Kenji Kawamura,et al.  Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO 2 in the Taylor Dome, Dome C and DML ice cores , 2004 .

[85]  Richard A. Feely,et al.  Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans , 2004, Science.

[86]  Paul J. Valdes,et al.  Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum , 2004 .

[87]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[88]  W. Berger,et al.  Increase of atmospheric CO2 during deglaciation: Constraints on the coral reef hypothesis from patterns of deposition , 2004 .

[89]  N. Mahowald,et al.  Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution , 2003 .

[90]  D. Hodell,et al.  Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean , 2003 .

[91]  M. Heimann,et al.  Climate and interannual variability of the atmosphere‐biosphere 13CO2 flux , 2003 .

[92]  Stephen Sitch,et al.  Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios , 2001 .

[93]  K. K. Goldewijk Estimating global land use change over the past 300 years: The HYDE Database , 2001 .

[94]  N. Shackleton Climate Change Across the Hemispheres , 2001, Science.

[95]  Judith Lean,et al.  Evolution of the Sun's Spectral Irradiance Since the Maunder Minimum , 2000 .

[96]  Matthew R. Walker,et al.  Four centuries of geomagnetic secular variation from historical records , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[97]  J. Jouzel,et al.  Solar irradiance during the last 1200 years based on cosmogenic nuclides , 2000 .

[98]  G. Marland,et al.  Carbon dioxide emissions from fossil‐fuel use, 1751–1950 , 1999 .

[99]  J. Masarik,et al.  Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere , 1999 .

[100]  D. Etheridge,et al.  A 1000-year high precision record of δ 13 C in atmospheric CO 2 , 1999 .

[101]  Christoph Heinze,et al.  A global oceanic sediment model for long‐term climate studies , 1999 .

[102]  G. Boer,et al.  The modification of greenhouse gas warming by the direct effect of sulphate aerosols , 1998 .

[103]  Stephen M. Griffies,et al.  The Gent–McWilliams Skew Flux , 1998 .

[104]  D. Sigman,et al.  Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period , 1997, Nature.

[105]  J. Jouzel,et al.  Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records , 1997 .

[106]  W. Peltier,et al.  Ice Age Paleotopography , 1994, Science.

[107]  J. Bauer,et al.  14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea , 1992, Nature.

[108]  I. G. Enting,et al.  On the use of smoothing splines to filter CO2 data , 1987 .

[109]  U. Siegenthaler,et al.  Uptake of excess CO2 by an outcrop-diffusion model of the ocean , 1983 .

[110]  Stephen G. Warren,et al.  Parameterization of Outgoing Infrared Radiation Derived from Detailed Radiative Calculations. , 1982 .

[111]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[112]  André Berger,et al.  Long-term variations of daily insolation and Quaternary climatic changes , 1978 .

[113]  H. Oeschger,et al.  A box diffusion model to study the carbon dioxide exchange in nature , 1975 .

[114]  L. Fisk,et al.  Solar modulation of galactic cosmic rays, 2 , 1969 .

[115]  C. Buck,et al.  IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP , 2013, Radiocarbon.

[116]  Crowley,et al.  Atmospheric science: Methane rises from wetlands , 2011, Nature.

[117]  D. Shindell,et al.  Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1) , 2011 .

[118]  V. Brovkin,et al.  Last Glacial Maximum CO 2 and 13 C δ successfully reconciled , 2011 .

[119]  J. Beer,et al.  Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides , 2010 .

[120]  Paul J. Valdes,et al.  High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr , 2010 .

[121]  K. Suzuki,et al.  Ventilation of the Deep Southern Ocean and Deglacial CO 2 Rise , 2010 .

[122]  K. Hughen,et al.  IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 Years cal BP , 2009, Radiocarbon.

[123]  Fortunat Joos,et al.  Solar activity during the last 1000 yr inferred from radionuclide records , 2007 .

[124]  Stefano Schiavon,et al.  Climate Change 2007: The Physical Science Basis. , 2007 .

[125]  D. Etheridge,et al.  Law Dome CO 2 , CH 4 and N 2 O ice core records extended to 2000 years , 2006 .

[126]  B. Kromer,et al.  Reconstruction of the 14C Production Rate from Measured Relative Abundance , 2005, Radiocarbon.

[127]  O. Marchal Optimal estimation of atmospheric 14C production over the Holocene: paleoclimate implications , 2005 .

[128]  C E Buck,et al.  Shcal04 Southern Hemisphere Calibration, 0–11.0 Cal Kyr BP , 2004, Radiocarbon.

[129]  C. Buck,et al.  Marine04 Marine Radiocarbon Age Calibration, 0–26 Cal Kyr Bp , 2004, Radiocarbon.

[130]  M. Scholze,et al.  Constraining temperature variations over the last millennium by comparing simulated and observed atmospheric CO2 , 2003 .

[131]  E. Boyle,et al.  Radiocarbon Dating of Deep-Sea Corals , 2002, Radiocarbon.

[132]  N. H. Ravindranath,et al.  Land use, land-use change and forestry. Summary for policymakers. , 2000 .

[133]  J. Shaw,et al.  Variations in the geomagnetic dipole moment over the last 12 000 years , 2000 .

[134]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[135]  M. Suter,et al.  Temporal 10Be Variations in Ice , 1983, Radiocarbon.

[136]  K. Hobson,et al.  Solar Modulation Effects in Terrestrial Production of Carbon-14 , 1980, Radiocarbon.

[137]  M. Stuiver,et al.  Discussion Reporting of 14C Data , 1977, Radiocarbon.

[138]  L. Fisk,et al.  Solar modulation of galactic cosmic rays , 1971 .

[139]  E. Boldt,et al.  Solar modulation of galactic cosmic rays. , 1967 .

[140]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .

[141]  Astronomy Astrophysics Letter to the Editor Evidence of a long-term trend in total solar irradiance ⋆ , 2022 .