Distributed Flooding-Based Storage Algorithms for Large-Scale Wireless Sensor Networks

In this paper we propose distributed storage algorithms for large-scale wireless sensor networks. Assume a wireless sensor network with n nodes that have limited power, memory, and bandwidth. Each node is capable of both sensing and storing data. Such sensor nodes might disappear from the network due to failures or battery depletion. Hence it is desired to design efficient schemes to collect data from these n nodes. We propose two distributed storage algorithms (DSA's) that utilize network flooding to solve this problem. In the first algorithm, DSA-I, we assume that the total number of sensors is known to each sensor in the network. We show that this algorithm is efficient in terms of the encoding and decoding operations. Furthermore, every node utilizes network flooding to disseminate its data throughout the network using a mixing time of approximately O(n). In the second algorithm, DSA-II, we assume that the total number of nodes is not known to every sensor; hence dissemination of the data does not depend on n. The encoding operations in this case take O(Cµ2), where µ is the mean degree of the network graph and C is a system parameter. We evaluate the performance of the proposed algorithms through analysis and simulation. We show that the performance of the proposed algorithms matches the derived theoretical results.

[1]  Emina Soljanin,et al.  Raptor codes based distributed storage algorithms for wireless sensor networks , 2008, 2008 IEEE International Symposium on Information Theory.

[2]  Vinod M. Prabhakaran,et al.  Distributed Fountain Codes for Networked Storage , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[3]  Ivan Stojmenovic,et al.  Sensor Networks , 2005 .

[4]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[5]  Baochun Li,et al.  Data Persistence in Large-Scale Sensor Networks with Decentralized Fountain Codes , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[6]  Emina Soljanin,et al.  Fountain Codes Based Distributed Storage Algorithms for Large-Scale Wireless Sensor Networks , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[7]  Jon Feldman,et al.  Growth codes: maximizing sensor network data persistence , 2006, SIGCOMM 2006.

[8]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[9]  Vinod M. Prabhakaran,et al.  Ubiquitous access to distributed data in large-scale sensor networks through decentralized erasure codes , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..