Facile synthesis of cobalt-doped sodium lithium manganese oxide with superior rate capability and excellent cycling performance for sodium-ion battery

[1]  S. Brutti,et al.  Structural Degradation of O3-NaMnO2 Positive Electrodes in Sodium-Ion Batteries , 2022, Crystals.

[2]  Yingjin Wei,et al.  Understanding Rechargeable Magnesium Ion Batteries via First-Principles Computations: A Comprehensive Review , 2022, Energy Storage Materials.

[3]  S. Basu,et al.  Understanding the Design of Cathode Materials for Na-Ion Batteries , 2022, ACS omega.

[4]  Runguo Zheng,et al.  Boosting Electrochemical Reaction and Suppressing Phase Transition with High-Entropy O3-Type Layered Oxide for Sodium-Ion Batteries , 2022, Journal of Materials Chemistry A.

[5]  Liping Zhao,et al.  Unusual Site‐Selective Doping in Layered Cathode Strengthens Electrostatic Cohesion of Alkali‐Metal Layer for Practicable Sodium‐Ion Full Cell , 2021, Advanced materials.

[6]  P. Balaya,et al.  A mini review on cathode materials for sodium‐ion batteries , 2021, International Journal of Applied Ceramic Technology.

[7]  S. Chan,et al.  Recent development of hydrogen and fuel cell technologies: A review , 2021, Energy Reports.

[8]  P. Adelhelm,et al.  Structural Aspects of P2‐Type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) Stabilization by Lithium Defects as a Cathode Material for Sodium‐Ion Batteries , 2021, Advanced Functional Materials.

[9]  Yaxiang Lu,et al.  Fundamentals, status and promise of sodium-based batteries , 2021, Nature Reviews Materials.

[10]  N. Quyen,et al.  Carbon coated NaLi0.2Mn0.8O2 as a superb cathode material for sodium ion batteries , 2021 .

[11]  Zonghai Chen,et al.  Role of Lithium Doping in P2-Na0.67Ni0.33Mn0.67O2 for Sodium-Ion Batteries , 2021, Chemistry of materials : a publication of the American Chemical Society.

[12]  Yong‐Mook Kang,et al.  Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery , 2021, Nature Communications.

[13]  Bao Wang,et al.  Alloy anodes for sodium-ion batteries , 2020, Rare Metals.

[14]  Son Luong,et al.  P2-type layered structure Na1.0Li0.2Mn0.7Ti0.1O2 as a superb electrochemical performance cathode material for sodium-ion batteries , 2020 .

[15]  Yu‐Guo Guo,et al.  Advances in rechargeable Mg batteries , 2020 .

[16]  Pham Manh Thao,et al.  Morphology controlled synthesis of battery-type NiCo2O4 supported on nickel foam for high performance hybrid supercapacitors , 2020 .

[17]  K. Abraham How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? , 2020 .

[18]  Shaohua Guo,et al.  Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries , 2020 .

[19]  Daniel Akinyele,et al.  Review of Fuel Cell Technologies and Applications for Sustainable Microgrid Systems , 2020 .

[20]  Pham Manh Thao,et al.  One-step solvothermal synthesis of mixed nickel–cobalt sulfides as high-performance supercapacitor electrode materials , 2020 .

[21]  Yuezhan Feng,et al.  Recent progress on FeS2 as anodes for metal-ion batteries , 2020, Rare Metals.

[22]  Jianyin Wang,et al.  Cu-doped P2-Na0.7Mn0.9Cu0.1O2 Sodium-Ion Battery Cathode with Enhanced Electrochemical Performance: Insight from Water Sensitivity and Surface Mn(II) Formation Studies. , 2020, ACS applied materials & interfaces.

[23]  T. Tran,et al.  Facile Synthesis of a NiCo 2 O 4 Nanoparticles Mesoporous Carbon Composite as Electrode Materials for Supercapacitor , 2020 .

[24]  T. V. Tran,et al.  Mixing amorphous carbon enhanced electrochemical performances of NiCo2O4 nanoparticles as anode materials for sodium-ion batteries , 2020, Applied Physics A.

[25]  Diwakar Karuppiah,et al.  Cobalt‐doped layered lithium nickel oxide as a three‐in‐one electrode for lithium‐ion and sodium‐ion batteries and supercapacitor applications , 2020, International Journal of Energy Research.

[26]  S. Maenosono,et al.  Facile synthesis of Mn-doped NiCo2O4 nanoparticles with enhanced electrochemical performance for a battery-type supercapacitor electrode. , 2020, Dalton transactions.

[27]  K. Asokan,et al.  Unary doping effect of A2+ (A = Zn, Co, Ni) on the structural, electrical and magnetic properties of substituted iron oxide nanostructures , 2020, Journal of Materials Science: Materials in Electronics.

[28]  M. Shahzad,et al.  Prospects in anode materials for sodium ion batteries - A review , 2020 .

[29]  K. C. Wasalathilake,et al.  Recent advances in graphene based materials as anode materials in sodium-ion batteries , 2020, Journal of Energy Chemistry.

[30]  F. Ciucci,et al.  Dual-phase MoS2 as a high-performance sodium-ion battery anode , 2020 .

[31]  K. Edström,et al.  Understanding the redox process upon electrochemical cycling of the P2-Na0.78Co1/2Mn1/3Ni1/6O2 electrode material for sodium-ion batteries , 2020, Communications Chemistry.

[32]  Jie Zhang,et al.  Zinc–air batteries: are they ready for prime time? , 2019, Chemical science.

[33]  Mao-wen Xu,et al.  A review on pyrophosphate framework cathode materials for sodium-ion batteries , 2019, Journal of Materials Chemistry A.

[34]  Yunhui Huang,et al.  Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically pre-alloying Na. , 2019, ACS applied materials & interfaces.

[35]  J. Tu,et al.  Polypyrrole-Coated Sodium Manganate Hollow Microspheres as a Superior Cathode for Sodium Ion Batteries. , 2019, ACS applied materials & interfaces.

[36]  Yong‐Mook Kang,et al.  P2/O3 phase-integrated Na0.7MnO2 cathode materials for sodium-ion rechargeable batteries , 2019, Journal of Alloys and Compounds.

[37]  A. Yu,et al.  Recent Progress in Electrically Rechargeable Zinc–Air Batteries , 2018, Advanced materials.

[38]  Guozhao Fang,et al.  Caging Na3V2(PO4)2F3 Microcubes in Cross‐Linked Graphene Enabling Ultrafast Sodium Storage and Long‐Term Cycling , 2018, Advanced science.

[39]  K. Kubota,et al.  Electrochemistry and Solid‐State Chemistry of NaMeO2 (Me = 3d Transition Metals) , 2018, Advanced Energy Materials.

[40]  T. Kulova,et al.  Sodium-Ion Batteries (a Review) , 2018, Russian Journal of Electrochemistry.

[41]  E. Bonanno,et al.  Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis , 2018, European journal of histochemistry : EJH.

[42]  Kan Wang,et al.  Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping , 2017 .

[43]  Pengjian Zuo,et al.  Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries , 2017 .

[44]  R. Axelbaum,et al.  Spray pyrolysis and electrochemical performance of Na_0.44MnO_2 for sodium-ion battery cathodes , 2017 .

[45]  K. Kubota,et al.  Sodium and Manganese Stoichiometry of P2-Type Na2/3 MnO2. , 2016, Angewandte Chemie.

[46]  K. Aly,et al.  Lattice strain estimation for CoAl2O4 nano particles using Williamson-Hall analysis , 2016 .

[47]  Jeng‐Kuei Chang,et al.  MoS2/graphene cathodes for reversibly storing Mg(2+) and Mg(2+)/Li(+) in rechargeable magnesium-anode batteries. , 2016, Chemical communications.

[48]  Xing-long Wu,et al.  Romanechite-structured Na(0.31)MnO(1.9) nanofibers as high-performance cathode material for a sodium-ion battery. , 2015, Chemical communications.

[49]  I. Hung,et al.  Synthesis and electrochemical performances of layered NaLi0.2Ni0.2Mn0.6O2 cathode for sodium-ion batteries , 2015 .

[50]  A. Tanaka,et al.  Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material for sodium ion batteries , 2015 .

[51]  I. Hung,et al.  Synthesis and Electrochemical Properties of Sodium Manganese-based Oxide Cathode Material for Sodium-ion Batteries , 2015 .

[52]  Jun Chen,et al.  The disodium salt of 2,5-dihydroxy-1,4-benzoquinone as anode material for rechargeable sodium ion batteries. , 2015, Chemical communications.

[53]  T. Rojo,et al.  Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process , 2014 .

[54]  S. Madhavi,et al.  Layered NaxMnO₂+z in sodium ion batteries-influence of morphology on cycle performance. , 2014, ACS applied materials & interfaces.

[55]  Xiqian Yu,et al.  Identifying the Critical Role of Li Substitution in P2− Na x (Li y Ni z Mn 1−y−z )O 2 (0 < x, y, z < 1) Intercalation Cathode Materials for High-Energy Na-Ion Batteries , 2014 .

[56]  Jiangfeng Qian,et al.  P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery , 2014 .

[57]  Lei Li,et al.  Sodium-ion batteries using ion exchange membranes as electrolytes and separators. , 2013, Chemical communications.

[58]  H. Ahn,et al.  Single crystalline Na(0.7)MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. , 2013, Chemistry.

[59]  M. Srinivasan,et al.  Combustion-synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries , 2013, Journal of Solid State Electrochemistry.

[60]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[61]  B. Hwang,et al.  The P2-Na(2/3)Co(2/3)Mn(1/3)O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. , 2011, Dalton transactions.

[62]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[63]  P. Hagenmuller,et al.  Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .