Extended hesitant fuzzy sets

AbstractHesitant fuzzy sets (HFSs) are a useful tool to manage situations in which the decision makers (DMs) hesitate about several possible values for the membership to assess a variable, alternative, etc. However, HFSs have the information loss problem and cannot identify different DMs, which interferes with the application of HFSs in decision making. To overcome these limitations, we develop the extended hesitant fuzzy sets (EHFSs) in this paper. As an extension of HFSs, EHFSs have close relationships with existing fuzzy sets including intuitionistic fuzzy sets (IFSs), fuzzy multisets (FMSs), type-2 fuzzy sets (T2FSs), dual hesitant fuzzy sets (DHFSs), and especially HFSs. We propose a concept of extended hesitant fuzzy elements (EHFEs), then study the basic operations and the desirable properties of EHFEs in detail. Some extended hesitant distance measures are developed to illustrate their advantages comparing with the existing hesitant distance measures. To extend EHFSs to decision making, we combine...

[1]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[2]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[3]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[4]  Masaharu Mizumoto,et al.  Some Properties of Fuzzy Sets of Type 2 , 1976, Inf. Control..

[5]  H. Carter Fuzzy Sets and Systems — Theory and Applications , 1982 .

[6]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[7]  R. Yager ON THE THEORY OF BAGS , 1986 .

[8]  M. O'Hagan,et al.  Aggregating Template Or Rule Antecedents In Real-time Expert Systems With Fuzzy Set Logic , 1988, Twenty-Second Asilomar Conference on Signals, Systems and Computers.

[9]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[10]  R. Yager Families of OWA operators , 1993 .

[11]  P. Kloeden,et al.  Metric Spaces Of Fuzzy Sets Theory And Applications , 1975 .

[12]  J. Kacprzyk,et al.  Advances in the Dempster-Shafer theory of evidence , 1994 .

[13]  Humberto Bustince,et al.  Correlation of interval-valued intuitionistic fuzzy sets , 1995, Fuzzy Sets Syst..

[14]  Janusz Kacprzyk,et al.  Multistage Fuzzy Control: A Prescriptive Approach , 1997 .

[15]  Azriel Rosenfeld,et al.  A Modified Hausdorff Distance Between Fuzzy Sets , 1999, Inf. Sci..

[16]  Janusz Kacprzyk,et al.  Distances between intuitionistic fuzzy sets , 2000, Fuzzy Sets Syst..

[17]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[18]  Li Dengfeng,et al.  New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions , 2002, Pattern Recognit. Lett..

[19]  Dengfeng Li,et al.  New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions , 2002, Pattern Recognit. Lett..

[20]  Sadaaki Miyamoto,et al.  Information clustering based on fuzzy multisets , 2003, Inf. Process. Manag..

[21]  Li Fan Bidirectional Approximate Reasoning Based on Weighted Similarity Measures of Vague Set , 2004 .

[22]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[23]  Weiqiong Wang,et al.  Distance measure between intuitionistic fuzzy sets , 2005, Pattern Recognit. Lett..

[24]  Hani Hagras,et al.  A type-2 fuzzy embedded agent to realise ambient intelligence in ubiquitous computing environments , 2005, Inf. Sci..

[25]  Zeshui Xu,et al.  Some geometric aggregation operators based on intuitionistic fuzzy sets , 2006, Int. J. Gen. Syst..

[26]  J. Merigó,et al.  The Induced Generalized OWA Operator , 2009, EUSFLAT Conf..

[27]  Zeshui Xu,et al.  Intuitionistic Fuzzy Aggregation Operators , 2007, IEEE Transactions on Fuzzy Systems.

[28]  Huawen Liu,et al.  Multi-criteria decision-making methods based on intuitionistic fuzzy sets , 2007, Eur. J. Oper. Res..

[29]  Zeshui Xu,et al.  Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making , 2007, Fuzzy Optim. Decis. Mak..

[30]  Ronald R. Yager,et al.  Decision Making Under Dempster-Shafer Uncertainties , 1992, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[31]  Zeshui Xu,et al.  Clustering algorithm for intuitionistic fuzzy sets , 2008, Inf. Sci..

[32]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[33]  Robert Ivor John,et al.  The collapsing method of defuzzification for discretised interval type-2 fuzzy sets , 2009, Inf. Sci..

[34]  José M. Merigó,et al.  Induced aggregation operators in decision making with the Dempster‐Shafer belief structure , 2009, Int. J. Intell. Syst..

[35]  John T. Rickard,et al.  Fuzzy Subsethood for Fuzzy Sets of Type-2 and Generalized Type- ${n}$ , 2009, IEEE Transactions on Fuzzy Systems.

[36]  Zhou-Jing Wang,et al.  An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights , 2009, Inf. Sci..

[37]  J. Merigó,et al.  Induced aggregation operators in decision making with the Dempster-Shafer belief structure , 2009 .

[38]  Cengiz Kahraman,et al.  A fuzzy multicriteria methodology for selection among energy alternatives , 2010, Expert Syst. Appl..

[39]  Zeshui Xu,et al.  A method based on distance measure for interval-valued intuitionistic fuzzy group decision making , 2010, Inf. Sci..

[40]  Zhao Fa-xin Distances Between Interval-Valued Intuitionistic Fuzzy Sets , 2010 .

[41]  V. Torra,et al.  A framework for linguistic logic programming , 2010 .

[42]  Zeshui Xu,et al.  Distance and similarity measures for hesitant fuzzy sets , 2011, Inf. Sci..

[43]  Ting-Yu Chen,et al.  A multicriteria group decision-making approach based on interval-valued intuitionistic fuzzy sets: A comparative perspective , 2011, Expert Syst. Appl..

[44]  Zeshui Xu,et al.  Hesitant fuzzy information aggregation in decision making , 2011, Int. J. Approx. Reason..

[45]  T. Baležentis,et al.  An integrated assessment of Lithuanian economic sectors based on financial ratios and fuzzy MCDM methods , 2012 .

[46]  Yi Peng,et al.  Improved AHP-group decision making for investment strategy selection , 2012 .

[47]  Jelena Stankevičienė,et al.  The evaluation of bank performance using a multicriteria decision making model: a case study on Lithuanian commercial banks , 2012 .

[48]  Zeshui Xu,et al.  Dual Hesitant Fuzzy Sets , 2012, J. Appl. Math..

[49]  Guiwu Wei,et al.  An approach to multiple attribute group decision making with interval intuitionistic trapezoidal fuzzy information , 2012 .

[50]  Zeshui Xu,et al.  Hesitant fuzzy geometric Bonferroni means , 2012, Inf. Sci..

[51]  Zeshui Xu,et al.  Consistency Measures for Hesitant Fuzzy Linguistic Preference Relations , 2014, IEEE Transactions on Fuzzy Systems.

[52]  Radko Mesiar,et al.  Hesitant L ‐Fuzzy Sets , 2017, Int. J. Intell. Syst..

[53]  K. Atanassov,et al.  Interval-Valued Intuitionistic Fuzzy Sets , 2019, Studies in Fuzziness and Soft Computing.