Engineering plant disease resistance based on TAL effectors.

Transcription activator-like (TAL) effectors are encoded by plant-pathogenic bacteria and induce expression of plant host genes. TAL effectors bind DNA on the basis of a unique code that specifies binding of amino acid residues in repeat units to particular DNA bases in a one-to-one correspondence. This code can be used to predict binding sites of natural TAL effectors and to design novel synthetic DNA-binding domains for targeted genome manipulation. Natural mechanisms of resistance in plants against TAL effector-containing pathogens have given insights into new strategies for disease control.

[1]  Peter Meyer,et al.  Transcriptional transgene silencing and chromatin components , 2000, Plant Molecular Biology.

[2]  C. Qiu,et al.  Transcription activator-like type III effector AvrXa27 depends on OsTFIIAgamma5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv. oryzae. , 2009, Molecular plant pathology.

[3]  D. Gabriel,et al.  Host-specific symptoms and increased release of Xanthomonas citri and X.campestris pv. malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6, respectively , 1994 .

[4]  Claudio Mussolino,et al.  A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity , 2011, Nucleic acids research.

[5]  W. Gruissem,et al.  High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance , 2012, Proceedings of the National Academy of Sciences.

[6]  Cai-guo Xu,et al.  The Bacterial Pathogen Xanthomonas oryzae Overcomes Rice Defenses by Regulating Host Copper Redistribution[W][OA] , 2010, Plant Cell.

[7]  Sebastian Schornack,et al.  Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. , 2006, Journal of plant physiology.

[8]  Huimin Zhao,et al.  Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. , 2012, Molecular bioSystems.

[9]  B. Dujon,et al.  Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[10]  G. Church,et al.  Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. , 2011, Nature biotechnology.

[11]  Bing Yang,et al.  Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice , 2007, Proceedings of the National Academy of Sciences.

[12]  J. Setubal,et al.  Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper , 2011, BMC Genomics.

[13]  A. Bogdanove,et al.  TAL effectors: finding plant genes for disease and defense. , 2010, Current opinion in plant biology.

[14]  M. Spalding,et al.  High-efficiency TALEN-based gene editing produces disease-resistant rice , 2012, Nature Biotechnology.

[15]  W. Zhai,et al.  Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1 , 2006, Molecular Genetics and Genomics.

[16]  C. Boucher,et al.  Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system , 2004, Molecular microbiology.

[17]  J. Keith Joung,et al.  TALENs: a widely applicable technology for targeted genome editing , 2012, Nature Reviews Molecular Cell Biology.

[18]  Daniel F. Voytas,et al.  Efficient TALEN-mediated gene knockout in livestock , 2012, Proceedings of the National Academy of Sciences.

[19]  T. J. Stevens,et al.  Economic Impacts of the Florida Citrus Industry in 2003-04 , 2006, EDIS.

[20]  D. Choi,et al.  RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome , 2012, Proceedings of the National Academy of Sciences.

[21]  Matthew J. Moscou,et al.  A Simple Cipher Governs DNA Recognition by TAL Effectors , 2009, Science.

[22]  M. Ganal,et al.  Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein. , 2001, Molecular plant-microbe interactions : MPMI.

[23]  B. Staskawicz,et al.  Molecular Evolution of Virulence in Natural Field Strains of Xanthomonas campestris pv. vesicatoria , 2000, Journal of bacteriology.

[24]  Shen Chen,et al.  High-resolution mapping and gene prediction of Xanthomonas Oryzae pv. Oryzae resistance gene Xa7 , 2008, Molecular Breeding.

[25]  Jens Boch,et al.  TAL effector RVD specificities and efficiencies , 2012, Nature Biotechnology.

[26]  Pamela A. Silver,et al.  Engineering synthetic TAL effectors with orthogonal target sites , 2012, Nucleic acids research.

[27]  H. Ariga,et al.  Efficient Targeted Mutagenesis in Medaka Using Custom-Designed Transcription Activator-Like Effector Nucleases , 2013, Genetics.

[28]  U. Bonas,et al.  Expression levels of avrBs3-like genes affect recognition specificity in tomato Bs4- but not in pepper Bs3-mediated perception. , 2005, Molecular plant-microbe interactions : MPMI.

[29]  Shiping Wang,et al.  Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26 , 2006, Theoretical and Applied Genetics.

[30]  R. Jansen,et al.  The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms , 2006, BMC Plant Biology.

[31]  D. Baulcombe,et al.  The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. , 2004, The Plant journal : for cell and molecular biology.

[32]  D. Baulcombe,et al.  Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato , 2006, Proceedings of the National Academy of Sciences.

[33]  S. Schornack,et al.  Characterization of AvrHah1, a novel AvrBs3-like effector from Xanthomonas gardneri with virulence and avirulence activity. , 2008, The New phytologist.

[34]  E. C. Teixeira,et al.  Comparison of the genomes of two Xanthomonas pathogens with differing host specificities , 2002, Nature.

[35]  M. Wayengera Identity of zinc finger nucleases with specificity to herpes simplex virus type II genomic DNA: novel HSV-2 vaccine/therapy precursors , 2011, Theoretical Biology and Medical Modelling.

[36]  R. Visser,et al.  Functional stacking of three resistance genes against Phytophthora infestans in potato , 2011, Transgenic Research.

[37]  Monya Baker,et al.  Gene-editing nucleases , 2011, Nature Methods.

[38]  R. Jiao,et al.  Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. , 2012, Journal of genetics and genomics = Yi chuan xue bao.

[39]  P. R. Scott,et al.  Plant disease: a threat to global food security. , 2005, Annual review of phytopathology.

[40]  G. Van den Ackerveken,et al.  The xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. , 2002, Molecular plant-microbe interactions : MPMI.

[41]  Yigong Shi,et al.  Specific DNA-RNA hybrid recognition by TAL effectors. , 2012, Cell reports.

[42]  Simone Hahn,et al.  Plant Pathogen Recognition Mediated by Promoter Activation of the Pepper Bs3 Resistance Gene , 2007, Science.

[43]  H. Heuer,et al.  Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. , 2013, The New phytologist.

[44]  E. Holub,et al.  Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. , 2013, Molecular plant pathology.

[45]  U. Bonas,et al.  Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria , 1989, Molecular and General Genetics MGG.

[46]  Frank F White,et al.  The type III effectors of Xanthomonas. , 2009, Molecular plant pathology.

[47]  J. Leach,et al.  Genomic Variability of the Xanthomonas Pathovar mangiferaeindicae, Agent of Mango Bacterial Black Spot , 1997, Applied and environmental microbiology.

[48]  U. Bonas,et al.  Xanthomonas AvrBs3 family-type III effectors: discovery and function. , 2010, Annual review of phytopathology.

[49]  E. Ward,et al.  Improving immunity in crops: new tactics in an old game. , 2011, Current opinion in plant biology.

[50]  F. White,et al.  The C Terminus of AvrXa10 Can Be Replaced by the Transcriptional Activation Domain of VP16 from the Herpes Simplex Virus , 1999, Plant Cell.

[51]  Hicham Mansour,et al.  Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein , 2011, Plant Molecular Biology.

[52]  Jian-Kang Zhu,et al.  De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks , 2011, Proceedings of the National Academy of Sciences.

[53]  Elo Leung,et al.  A TALE nuclease architecture for efficient genome editing , 2011, Nature Biotechnology.

[54]  Y. Bashan,et al.  Crop loss of pepper plants artificially infected with Xanthomonas campestris pv. vesicatoria in relation to symptom expression , 1985 .

[55]  John P. Rathjen,et al.  Plant immunity: towards an integrated view of plant–pathogen interactions , 2010, Nature Reviews Genetics.

[56]  U. Bonas,et al.  Characterization of AvrBs3-like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. , 2005, Molecular plant-microbe interactions : MPMI.

[57]  D. Gabriel,et al.  Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. , 1995, Molecular plant-microbe interactions : MPMI.

[58]  A. Roelfs Effects of Barberry Eradication on Stem Rust in the United States , 1982 .

[59]  J. Vossen,et al.  Understanding and exploiting late blight resistance in the age of effectors. , 2011, Annual review of phytopathology.

[60]  Nieng Yan,et al.  Structural Basis for Sequence-Specific Recognition of DNA by TAL Effectors , 2012, Science.

[61]  Li Wang,et al.  Erratum: Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting (Nucleic Acids Research (2011) 39 (e82) DOI: 10.1093/nar/gkr218) , 2011 .

[62]  S. Henikoff,et al.  Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. , 2004, The Plant journal : for cell and molecular biology.

[63]  D. Gabriel,et al.  Xanthomonas citri: breaking the surface. , 2003, Molecular plant pathology.

[64]  G. Van den Ackerveken,et al.  Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. , 2001, The Plant journal : for cell and molecular biology.

[65]  Paul H. Williams,et al.  Black rot: a continuing threat to world crucifers. , 1980 .

[66]  Jens Boch,et al.  Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene. , 2011, Molecular plant-microbe interactions : MPMI.

[67]  Y. Aoyama,et al.  Inhibition of tomato yellow leaf curl virus replication by artificial zinc-finger proteins. , 2007, Nucleic Acids Symposium Series.

[68]  F. White,et al.  Rice xa13 Recessive Resistance to Bacterial Blight Is Defeated by Induction of the Disease Susceptibility Gene Os-11N3[W][OA] , 2010, Plant Cell.

[69]  S. Miller,et al.  First Report of Xanthomonas gardneri Causing Bacterial Spot of Tomato in Ohio and Michigan. , 2011, Plant disease.

[70]  U. Bonas,et al.  Recognition of the Bacterial Avirulence Protein AvrBs3 Occurs inside the Host Plant Cell , 1996, Cell.

[71]  Takahito Watanabe,et al.  Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases , 2012, Nature Communications.

[72]  Carlos F. Barbas,et al.  Chimeric TALE recombinases with programmable DNA sequence specificity , 2012, Nucleic acids research.

[73]  J. Weissenbach,et al.  Genome sequence of the plant pathogen Ralstonia solanacearum , 2002, Nature.

[74]  D. Gabriel,et al.  Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family , 1996 .

[75]  Satoshi Natsume,et al.  Genome sequencing reveals agronomically important loci in rice using MutMap , 2012, Nature Biotechnology.

[76]  Sheng Huang,et al.  TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain , 2010, Nucleic Acids Res..

[77]  D. Gabriel,et al.  All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. , 2007, Molecular plant-microbe interactions : MPMI.

[78]  P. Bradley,et al.  TAL effectors: function, structure, engineering and applications. , 2013, Current opinion in structural biology.

[79]  Erin L. Doyle,et al.  Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting , 2011, Nucleic acids research.

[80]  J. Bergelson,et al.  Effector genes of Xanthomonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field. , 2004, Genetics.

[81]  Xinli Sun,et al.  Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. , 2004, The Plant journal : for cell and molecular biology.

[82]  Susan Carpenter,et al.  Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes , 2011, Nucleic acids research.

[83]  T. Mew,et al.  Focus on bacterial blight of rice. , 1993 .

[84]  W. Zhu,et al.  AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. , 1998, Molecular plant-microbe interactions : MPMI.

[85]  Simone Hahn,et al.  A Bacterial Effector Acts as a Plant Transcription Factor and Induces a Cell Size Regulator , 2007, Science.

[86]  Anton P. McCaffrey,et al.  Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[87]  J. Bennetzen,et al.  Promoter mutations of an essential gene for pollen development result in disease resistance in rice. , 2006, Genes & development.

[88]  Y. Doyon,et al.  Precise genome modification in the crop species Zea mays using zinc-finger nucleases , 2009, Nature.

[89]  R. Visser,et al.  The effect of pyramiding Phytophthora infestans resistance genes RPi-mcd1 and RPi-ber in potato , 2010, Theoretical and Applied Genetics.

[90]  B. Szurek,et al.  Molecular and pathotypic characterization of new Xanthomonas oryzae strains from West Africa. , 2007, Molecular plant-microbe interactions : MPMI.

[91]  S. Volrath,et al.  Gene targeting in Arabidopsis. , 2002, The Plant journal : for cell and molecular biology.

[92]  U. Bonas,et al.  Type III‐dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell , 2002, Molecular microbiology.

[93]  W. F. Thompson,et al.  Gene targeting in plants: fingers on the move. , 2006, Trends in plant science.

[94]  D. Gabriel,et al.  Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. , 1993, Molecular plant-microbe interactions : MPMI.

[95]  Colby G Starker,et al.  In vivo Genome Editing Using High Efficiency TALENs , 2012, Nature.

[96]  M. Bayles,et al.  BREEDING AND GENETICS Bacterial Blight Reactions of Sixty-one Upland Cotton Cultivars , 2007 .

[97]  F. Breusegem,et al.  Morphological classification of plant cell deaths , 2011, Cell Death and Differentiation.

[98]  V. Barbe,et al.  Genome Sequence of Xanthomonas campestris pv. campestris Strain Xca5 , 2013, Genome Announcements.

[99]  J. Leach,et al.  Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. , 1992, Molecular plant-microbe interactions : MPMI.

[100]  Tom Ellis,et al.  Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology , 2012, PloS one.

[101]  C. Zipfel,et al.  Effector biology of plant-associated organisms: concepts and perspectives. , 2012, Cold Spring Harbor symposia on quantitative biology.

[102]  F. White,et al.  Os8N3 is a host disease-susceptibility gene for bacterial blight of rice , 2006, Proceedings of the National Academy of Sciences.

[103]  U. Bonas,et al.  HpaB from Xanthomonas campestris pv. vesicatoria acts as an exit control protein in type III‐dependent protein secretion , 2004, Molecular microbiology.

[104]  T. Lahaye,et al.  A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens , 2009, Proceedings of the National Academy of Sciences.

[105]  Sang-Wook Han,et al.  Avirulence gene diversity of Xanthomonas axonopodis pv. glycines isolated in Korea. , 2008, Journal of microbiology and biotechnology.

[106]  Jeffrey B. Jones,et al.  Identification of Xanthomonas citri ssp. citri host specificity genes in a heterologous expression host. , 2009, Molecular plant pathology.

[107]  W. Frommer,et al.  Sugar transporters for intercellular exchange and nutrition of pathogens , 2010, Nature.

[108]  Erin L. Doyle,et al.  Targeting DNA Double-Strand Breaks with TAL Effector Nucleases , 2010, Genetics.

[109]  A. Bogdanove,et al.  Xanthomonas oryzae pathovars: model pathogens of a model crop. , 2006, Molecular plant pathology.

[110]  Fan Yang,et al.  R gene expression induced by a type-III effector triggers disease resistance in rice , 2005, Nature.

[111]  U. Bonas,et al.  Resistance in tomato to Xanthomonas campestris pv vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3 , 1993, Molecular and General Genetics MGG.

[112]  R. Nelson,et al.  Numbers of genes in the NBS and RLK families vary by more than four-fold within a plant species and are regulated by multiple factors , 2010, Nucleic acids research.

[113]  Jens Boch,et al.  Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors , 2009, Science.

[114]  Erin L. Doyle,et al.  Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. , 2012, The New phytologist.

[115]  Hongsheng Zhang,et al.  Identification and molecular mapping of the rice bacterial blight resistance gene allelic to Xa7 from an elite restorer line Zhenhui 084 , 2009, European Journal of Plant Pathology.

[116]  G. Blomme,et al.  Assessing the impacts of banana bacterial wilt disease on banana (Musa spp.) productivity and livelihoods of Ugandan farm households. , 2010 .

[117]  S. Henikoff,et al.  Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. , 2000, Plant physiology.

[118]  Jens Boch,et al.  Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors , 2010, Proceedings of the National Academy of Sciences.

[119]  D. Horvath,et al.  Microarray Analysis of the Semicompatible, Pathogenic Response and Recovery of Leafy Spurge (Euphorbia esula) Inoculated with the Cassava Bacterial Blight Pathogen Xanthomonas axonopodis pv. manihotis , 2013, Weed Science.

[120]  Philip Bradley,et al.  The Crystal Structure of TAL Effector PthXo1 Bound to Its DNA Target , 2012, Science.

[121]  J. Chai,et al.  Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region , 2012, Cell Research.

[122]  L Alexander Lyznik,et al.  Heritable targeted mutagenesis in maize using a designed endonuclease. , 2010, The Plant journal : for cell and molecular biology.

[123]  N. Fedoroff,et al.  Characterization and DNA-binding specificities of Ralstonia TAL-like effectors. , 2013, Molecular plant.

[124]  Jonathan D. G. Jones,et al.  Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. , 2010, FEMS microbiology letters.

[125]  Elo Leung,et al.  Knockout rats generated by embryo microinjection of TALENs , 2011, Nature Biotechnology.

[126]  J. C. Dunegan The Bacterial Spot Disease of the Peach and Other Stone Fruits , 1932 .

[127]  J. M. Dow,et al.  Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A , 2008, BMC Genomics.

[128]  Ying Lin,et al.  Highly Efficient and Specific Genome Editing in Silkworm Using Custom TALENs , 2012, PloS one.

[129]  Cai-guo Xu,et al.  Dissection of the factors affecting development-controlled and race-specific disease resistance conferred by leucine-rich repeat receptor kinase-type R genes in rice , 2009, Theoretical and Applied Genetics.

[130]  A. Das Citrus canker – A review , 2005 .

[131]  Ruhong Zhou,et al.  Comprehensive Interrogation of Natural TALE DNA Binding Modules and Transcriptional Repressor Domains , 2012, Nature Communications.

[132]  J. Connell,et al.  Zinc finger nuclease-mediated transgene deletion , 2010, Plant Molecular Biology.

[133]  U. Bonas,et al.  Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3Deltarep16. , 2009, The Plant journal : for cell and molecular biology.

[134]  Jian-Qun Chen,et al.  Unique evolutionary pattern of numbers of gramineous NBS–LRR genes , 2010, Molecular Genetics and Genomics.

[135]  Brian F Pfleger,et al.  Artificial repressors for controlling gene expression in bacteria. , 2013, Chemical communications.

[136]  Daniel F. Voytas,et al.  Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering1[W][OA] , 2012, Plant Physiology.

[137]  J. Lozano Bacterial Blight of Cassava in Colombia: Epidemiology and Control , 1974 .

[138]  R. Nelson,et al.  Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers , 1995, Molecular Breeding.

[139]  S. Mccouch,et al.  The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. , 2004, Molecular plant-microbe interactions : MPMI.

[140]  J. Keith Joung,et al.  Improved Somatic Mutagenesis in Zebrafish Using Transcription Activator-Like Effector Nucleases (TALENs) , 2012, PloS one.

[141]  Volker P Brendel,et al.  Two New Complete Genome Sequences Offer Insight into Host and Tissue Specificity of Plant Pathogenic Xanthomonas spp , 2011, Journal of bacteriology.

[142]  Fyodor D Urnov,et al.  In vivo cleavage of transgene donors promotes nuclease‐mediated targeted integration , 2013, Biotechnology and bioengineering.