Comparison of goose-type, chicken-type, and phage-type lysozymes illustrates the changes that occur in both amino acid sequence and three-dimensional structure during evolution

[1]  F. Schoentgen,et al.  Complete amino acid sequence of ostrich (Struthio camelus) egg-white lysozyme, a goose-type lysozyme. , 2005, European journal of biochemistry.

[2]  P. Coignet On specificity , 2003 .

[3]  B. Matthews,et al.  Comparison of the structures of cro and lambda repressor proteins from bacteriophage lambda. , 1989, Journal of molecular biology.

[4]  A. Wilson,et al.  Stomach lysozymes of ruminants. II. Amino acid sequence of cow lysozyme 2 and immunological comparisons with other lysozymes. , 1984, The Journal of biological chemistry.

[5]  M. Yaguchi,et al.  A fungal cellulase shows sequence homology with the active site of hen egg-white lysozyme. , 1983, Biochemical and biophysical research communications.

[6]  B. Matthews,et al.  Comparison of the structures of Cro and λ repressor proteins from bacteriophage λ , 1983 .

[7]  G. Schulz,et al.  Comparison of the three-dimensional protein and nucleotide structure of the FAD-binding domain of p-hydroxybenzoate hydroxylase with the FAD- as well as NADPH-binding domains of glutathione reductase. , 1983, Journal of molecular biology.

[8]  B. Matthews,et al.  Goose lysozyme structure: an evolutionary link between hen and bacteriophage lysozymes? , 1983, Nature.

[9]  Richard J. Simpson,et al.  Complete amino acid sequence of Embden goose (Anser anser) egg-white lysozyme , 1983 .

[10]  B. Strandberg,et al.  Structural comparisons of some small spherical plant viruses. , 1983, Journal of molecular biology.

[11]  M Go,et al.  Modular structural units, exons, and function in chicken lysozyme. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Hatada,et al.  Comparison of the folding of 2-keto-3-deoxy-6-phosphogluconate aldolase, triosephosphate isomerase and pyruvate kinase. Implications in molecular evolution. , 1982, Journal of molecular biology.

[13]  Robert Fletterick,et al.  Intron–exon splice junctions map at protein surfaces , 1982, Nature.

[14]  T. A. Jones,et al.  Structure of satellite tobacco necrosis virus at 3.0 A resolution. , 1982, Journal of molecular biology.

[15]  T. Steitz,et al.  Structural similarity in the DNA-binding domains of catabolite gene activator and cro repressor proteins. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Kakudo,et al.  The three-dimensional structure of the lysozyme produced by Streptomyces erythraeus. , 1981, The Journal of biological chemistry.

[17]  E. Vasstrand,et al.  The specificity requirements of bacteriophage T4 lysozyme. Involvement of N-acetamido groups. , 1981, European journal of biochemistry.

[18]  B. Matthews,et al.  An oscillation data collection system for high‐resolution protein crystallography , 1981 .

[19]  C. Craik,et al.  O2 binding properties of the product of the central exon of β-globin gene , 1981, Nature.

[20]  B. Matthews,et al.  Crystallographic determination of the mode of binding of oligosaccharides to T4 bacteriophage lysozyme: implications for the mechanism of catalysis. , 1981, Journal of molecular biology.

[21]  S J Remington,et al.  Relation between hen egg white lysozyme and bacteriophage T4 lysozyme: evolutionary implications. , 1981, Journal of molecular biology.

[22]  A. E. Sippel,et al.  Genes pieced together — exons delineate homologous structures of diverged lysozymes , 1981, Nature.

[23]  B. Matthews,et al.  Common precursor of lysozymes of hen egg-white and bacteriophage T4 , 1981, Nature.

[24]  A. Means,et al.  Ovomucoid intervening sequences specify functional domains and generate protein polymorphism , 1980, Cell.

[25]  A. E. Sippel,et al.  Exons encode functional and structural units of chicken lysozyme. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[26]  P. Argos,et al.  A structural comparison of concanavalin a and tomato bushy stunt virus protein , 1980, Journal of Molecular Evolution.

[27]  S J Remington,et al.  A systematic approach to the comparison of protein structures. , 1980, Journal of molecular biology.

[28]  R. Simpson,et al.  Complete amino acid sequence of the goose-type lysozyme from the egg white of the black swan. , 1980, Biochemistry.

[29]  C. Craik,et al.  Characterization of globin domains: heme binding to the central exon product. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Lesk,et al.  How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. , 1980, Journal of molecular biology.

[31]  N. Tanaka,et al.  Structure of Streptomyces erythraeus lysozyme at 6 A resolution. , 1979, Journal of biochemistry.

[32]  P Argos,et al.  Structural comparisons of heme binding proteins. , 1979, Biochemistry.

[33]  Michael G. Rossmann,et al.  Processing oscillation diffraction data for very large unit cells with an automatic convolution technique and profile fitting , 1979 .

[34]  A. Mclachlan Gene duplications in the structural evolution of chymotrypsin. , 1979, Journal of molecular biology.

[35]  S. Tonegawa,et al.  Sequences of mouse immunoglobulin light chain genes before and after somatic changes , 1978, Cell.

[36]  W. Hol,et al.  Structure of bovine liver rhodanese. I. Structure determination at 2.5 A resolution and a comparison of the conformation and sequence of its two domains. , 1978, Journal of molecular biology.

[37]  C. Blake,et al.  Do genes-in-pieces imply proteins-in-pieces? , 1978, Nature.

[38]  S J Remington,et al.  A general method to assess similarity of protein structures, with applications to T4 bacteriophage lysozyme. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[39]  T. L. Blundell,et al.  Structural evidence for gene duplication in the evolution of the acid proteases , 1978, Nature.

[40]  D. Stuart,et al.  Structure of pyruvate kinase and similarities with other enzymes: possible implications for protein taxonomy and evolution , 1978, Nature.

[41]  W. Gilbert Why genes in pieces? , 1978, Nature.

[42]  B. Matthews,et al.  Structure of the lysozyme from bacteriophage T4: an electron density map at 2.4 A resolution. , 1978, Journal of molecular biology.

[43]  C. Chothia,et al.  Structure of proteins: packing of alpha-helices and pleated sheets. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[44]  S J Remington,et al.  Atomic coordinates for T4 phage lysozyme. , 1977, Biochemical and biophysical research communications.

[45]  P Argos,et al.  The taxonomy of protein structure. , 1977, Journal of molecular biology.

[46]  P Argos,et al.  Exploring structural homology of proteins. , 1976, Journal of molecular biology.

[47]  W. Behnke,et al.  Physical-chemical studies on the role of the metal ions in concanavalin A. , 1976, Journal of molecular biology.

[48]  D C Richardson,et al.  Similarity of three-dimensional structure between the immunoglobulin domain and the copper, zinc superoxide dismutase subunit. , 1976, Journal of molecular biology.

[49]  P Argos,et al.  A comparison of the heme binding pocket in globins and cytochrome b5. , 1975, The Journal of biological chemistry.

[50]  G. Petsko,et al.  Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5Å resolution: using amino acid sequence data , 1975, Nature.

[51]  B. Matthews,et al.  The three dimensional structure of the lysozyme from bacteriophage T4. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[52]  L. O. Ford,et al.  Crystal structure of a lysozyme-tetrasaccharide lactone complex. , 1974, Journal of molecular biology.

[53]  Michael G. Rossmann,et al.  Chemical and biological evolution of a nucleotide-binding protein , 1974, Nature.

[54]  M G Rossmann,et al.  Comparison of super-secondary structures in proteins. , 1973, Journal of molecular biology.

[55]  M. Inouye,et al.  Chemical studies on the enzymatic specificity of goose egg white lysozyme. , 1973, The Journal of biological chemistry.

[56]  R. Canfield,et al.  Primary structure of lysozymes from man and goose. , 1971, Nature: New biology.

[57]  R. Canfield,et al.  Purification and characterization of a lysozyme from goose egg white. , 1967, Biochemical and biophysical research communications.

[58]  M. Inouye,et al.  The amino acid sequence of T4 bacteriophage lysozyme , 1966 .

[59]  W. Fitch An improved method of testing for evolutionary homology. , 1966, Journal of molecular biology.

[60]  D. F. Koenig,et al.  Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution , 1965, Nature.

[61]  C. Chothia,et al.  Structure ofproteins: Packing ofa-helices andpleated sheets , 1977 .

[62]  M G Rossmann,et al.  Comparison of protein structures. , 1985, Methods in enzymology.

[63]  N. Isaacs,et al.  Three-dimensional structure of goose-type lysozyme from the egg white of the Australian black swan, Cygnus atratus. , 1985, Australian journal of biological sciences.

[64]  B. Matthews,et al.  Amino acid substitutions far from the active site of bacteriophage T4 lysozyme reduce catalytic activity and suggest that the C-terminal lobe of the enzyme participates in substrate binding. , 1982, Journal of molecular biology.

[65]  W. Rutter,et al.  Rat preprocarboxypeptidase A: cDNA sequence and preliminary characterization of the gene. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[66]  B. Matthews 4 – X-Ray Structure of Proteins , 1977 .

[67]  A. Wilson,et al.  Comparative Studies of the Active Site Region of Lysozymes from Eleven Different Sources , 1974 .

[68]  Taiji Imoto,et al.  21 Vertebrate Lysozymes , 1972 .

[69]  B. Matthews The Three Dimensional Structure of the Lysozyme from Bacteriophage T4 (protein , 2022 .