Trajectory Analysis and Semantic Region Modeling Using Nonparametric Hierarchical Bayesian Models

We propose a novel framework of using a nonparametric Bayesian model, called Dual Hierarchical Dirichlet Processes (Dual-HDP) (Wang et al. in IEEE Trans. Pattern Anal. Mach. Intell. 31:539–555, 2009), for unsupervised trajectory analysis and semantic region modeling in surveillance settings. In our approach, trajectories are treated as documents and observations of an object on a trajectory are treated as words in a document. Trajectories are clustered into different activities. Abnormal trajectories are detected as samples with low likelihoods. The semantic regions, which are subsets of paths commonly taken by objects and are related to activities in the scene, are also modeled. Under Dual-HDP, both the number of activity categories and the number of semantic regions are automatically learnt from data. In this paper, we further extend Dual-HDP to a Dynamic Dual-HDP model which allows dynamic update of activity models and online detection of normal/abnormal activities. Experiments are evaluated on a simulated data set and two real data sets, which include 8,478 radar tracks collected from a maritime port and 40,453 visual tracks collected from a parking lot.

[1]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  W. Eric L. Grimson,et al.  Trajectory analysis and semantic region modeling using a nonparametric Bayesian model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[4]  Tieniu Tan,et al.  A system for learning statistical motion patterns , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Andrea Cavallaro,et al.  Multifeature Object Trajectory Clustering for Video Analysis , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[6]  Eamonn J. Keogh,et al.  Scaling up dynamic time warping for datamining applications , 2000, KDD '00.

[7]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[8]  Ramakant Nevatia,et al.  Multi-agent event recognition , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[9]  Svetha Venkatesh,et al.  AdaBoost.MRF: Boosted Markov Random Forests and Application to Multilevel Activity Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[10]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[11]  W. Eric L. Grimson,et al.  Spatial Latent Dirichlet Allocation , 2007, NIPS.

[12]  Tim J. Ellis,et al.  Path detection in video surveillance , 2002, Image Vis. Comput..

[13]  Thomas S. Huang,et al.  Image processing , 1971 .

[14]  Wei Hu,et al.  A Coarse-to-Fine Strategy for Vehicle Motion Trajectory Clustering , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[15]  Jack Li,et al.  Models and Algorithms for Detection and Tracking of Coordinated Groups , 2007, 2008 IEEE Aerospace Conference.

[16]  Anna Vilanova,et al.  Evaluation of fiber clustering methods for diffusion tensor imaging , 2005, VIS 05. IEEE Visualization, 2005..

[17]  Geoffrey I. Webb,et al.  Encyclopedia of Machine Learning , 2011, Encyclopedia of Machine Learning.

[18]  Mubarak Shah,et al.  TemporalBoost for event recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[19]  Mohan M. Trivedi,et al.  Learning trajectory patterns by clustering: Experimental studies and comparative evaluation , 2009, CVPR.

[20]  Mubarak Shah,et al.  Probabilistic Modeling of Scene Dynamics for Applications in Visual Surveillance , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Matthew Brand,et al.  Discovery and Segmentation of Activities in Video , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  S. Roweis,et al.  Time-Varying Topic Models using Dependent Dirichlet Processes , 2005 .

[23]  Stefan Carlsson,et al.  Multi-Target Tracking - Linking Identities using Bayesian Network Inference , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[24]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[25]  Peter H. Tu,et al.  Simultaneous estimation of segmentation and shape , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[26]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[28]  Antonio Torralba,et al.  Describing Visual Scenes using Transformed Dirichlet Processes , 2005, NIPS.

[29]  Arnaud Doucet,et al.  Generalized Polya Urn for Time-varying Dirichlet Process Mixtures , 2007, UAI.

[30]  Tim J. Ellis,et al.  Automatic learning of an activity-based semantic scene model , 2003, Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, 2003..

[31]  J. Lafferty,et al.  Time-Sensitive Dirichlet Process Mixture Models , 2005 .

[32]  Gregory D. Hager,et al.  Probabilistic data association methods in visual tracking of groups , 2004, CVPR 2004.

[33]  Ramakant Nevatia,et al.  Event Detection and Analysis from Video Streams , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Hassan Foroosh,et al.  Trajectory Rectification and Path Modeling for Video Surveillance , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[35]  A. Gelfand,et al.  The Nested Dirichlet Process , 2008 .

[36]  Roberto Cipolla,et al.  Unsupervised Bayesian Detection of Independent Motion in Crowds , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[37]  Tieniu Tan,et al.  Similarity based vehicle trajectory clustering and anomaly detection , 2005, IEEE International Conference on Image Processing 2005.

[38]  Antonio Torralba,et al.  Describing Visual Scenes Using Transformed Objects and Parts , 2008, International Journal of Computer Vision.

[39]  Tieniu Tan,et al.  Trajectory Series Analysis based Event Rule Induction for Visual Surveillance , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Mubarak Shah,et al.  Multi feature path modeling for video surveillance , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[41]  Yee Whye Teh,et al.  Dirichlet Process , 2017, Encyclopedia of Machine Learning and Data Mining.

[42]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[43]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[44]  Jianbo Shi,et al.  Detecting unusual activity in video , 2004, CVPR 2004.

[45]  Lihi Zelnik-Manor,et al.  Event-based analysis of video , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[46]  Zhouyu Fu,et al.  Semantic-Based Surveillance Video Retrieval , 2007, IEEE Transactions on Image Processing.

[47]  John D. Lafferty,et al.  Dynamic topic models , 2006, ICML.

[48]  W. Eric L. Grimson,et al.  Learning Semantic Scene Models by Trajectory Analysis , 2006, ECCV.

[49]  Max Welling,et al.  Asynchronous Distributed Learning of Topic Models , 2008, NIPS.

[50]  Anthony G. Cohn,et al.  Generation of Semantic Regions from Image Sequences , 1996, ECCV.

[51]  Juan Carlos Niebles,et al.  Unsupervised Learning of Human Action Categories , 2006 .

[52]  Tianzhu Zhang,et al.  Learning semantic scene models by object classification and trajectory clustering , 2009, CVPR.

[53]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Alexei A. Efros,et al.  Discovering object categories in image collections , 2005 .

[55]  David B. Dunson,et al.  The dynamic hierarchical Dirichlet process , 2008, ICML '08.

[56]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[57]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  W. Eric L. Grimson,et al.  Unsupervised Activity Perception by Hierarchical Bayesian Models , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[59]  Alan E. Gelfand,et al.  SPATIAL NONPARAMETRIC BAYESIAN MODELS , 2001 .

[60]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[61]  N. Pillai,et al.  Bayesian density regression , 2007 .

[62]  W. Eric L. Grimson,et al.  Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  A. G. Amitha Perera,et al.  A unified framework for tracking through occlusions and across sensor gaps , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[64]  David C. Hogg,et al.  Learning the distribution of object trajectories for event recognition , 1996, Image Vis. Comput..

[65]  Juan Carlos Niebles,et al.  A Hierarchical Model of Shape and Appearance for Human Action Classification , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[66]  Shaogang Gong,et al.  Video behaviour profiling and abnormality detection without manual labelling , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[67]  Shaogang Gong,et al.  Beyond Tracking: Modelling Activity and Understanding Behaviour , 2006, International Journal of Computer Vision.

[68]  Yang Wang,et al.  Unsupervised Discovery of Action Classes , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[69]  A.S. Willsky,et al.  Nonparametric Bayesian Methods for Large Scale Multi-Target Tracking , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[70]  R. Vidal,et al.  Motion segmentation with missing data using PowerFactorization and GPCA , 2004, CVPR 2004.

[71]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[72]  René Vidal,et al.  Motion Segmentation in the Presence of Outlying, Incomplete, or Corrupted Trajectories , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[73]  J. E. Griffin,et al.  Order-Based Dependent Dirichlet Processes , 2006 .