A topological join construction and the Toda system on compact surfaces of arbitrary genus

We consider a Toda system of Liouville equations defined on a compact surface which arises as a model for non-abelian Chern-Simons vortices. For the first time the range of parameters $\rho_1 \in (4k\pi , 4(k+1)\pi)$, $k \in \mathbb{N}$, $\rho_2 \in (4\pi, 8\pi )$ is studied with a variational approach on surfaces with arbitrary genus. We provide a general existence result by means of a new improved Moser-Trudinger type inequality and introducing a topological join construction in order to describe the interaction of the two components.

[1]  A. Pistoia,et al.  Asymmetric blow-up for the SU(3) Toda system , 2014, 1411.3482.

[2]  Luca Battaglia,et al.  A note on compactness properties of the singular Toda system , 2014, 1410.4991.

[3]  Juncheng Wei,et al.  Degree counting and shadow system for $SU(3)$ Toda system: one bubbling , 2014, 1408.5802.

[4]  A. Pistoia,et al.  A continuum of solutions for the SU(3) Toda System exhibiting partial blow‐up , 2014, 1407.8407.

[5]  Luca Battaglia Existence and multiplicity result for the singular Toda system , 2014, 1404.1970.

[6]  Juncheng Wei,et al.  New blow-up phenomena for SU(n+1) Toda system , 2014, 1402.3784.

[7]  A. Malchiodi,et al.  On the Leray-Schauder degree of the Toda system on compact surfaces , 2013, 1311.7375.

[8]  A. Malchiodi,et al.  A general existence result for the Toda system on compact surfaces , 2013, 1306.5404.

[9]  A. Malchiodi,et al.  An Improved Geometric Inequality via Vanishing Moments, with Applications to Singular Liouville Equations , 2012, 1206.0225.

[10]  A. Malchiodi,et al.  A Variational Analysis of the Toda System on Compact Surfaces , 2011, 1105.3701.

[11]  G. Tarantello Analytical, geometrical and topological aspects of a class of mean field equations on surfaces , 2010 .

[12]  G. Tarantello Selfdual Gauge Field Vortices: An Analytical Approach , 2008 .

[13]  Z. Djadli EXISTENCE RESULT FOR THE MEAN FIELD PROBLEM ON RIEMANN SURFACES OF ALL GENUSES , 2008 .

[14]  A. Malchiodi Topological methods for an elliptic equation with exponential nonlinearities , 2008 .

[15]  A. Malchiodi Morse theory and a scalar field equation on compact surfaces , 2008, Advances in Differential Equations.

[16]  A. Malchiodi,et al.  Some existence results for the Toda system on closed surfaces , 2007 .

[17]  M. Lucia A deformation lemma with an application to a mean field equation , 2007 .

[18]  S. Kallel,et al.  Symmetric Joins and Weighted Barycenters , 2006, math/0602283.

[19]  Nathalie Jacobs Springer , 2006 .

[20]  M. Pino,et al.  Singular limits in Liouville-type equations , 2005 .

[21]  J. Jost,et al.  Analytic aspects of the Toda system: II. Bubbling behavior and existence of solutions , 2005, math/0505145.

[22]  P. Esposito,et al.  On the existence of blowing-up solutions for a mean field equation ? ? The first and second authors , 2005 .

[23]  A. Malchiodi,et al.  Existence of conformal metrics with constant Q-curvature , 2004, math/0410141.

[24]  Chiun-Chuan Chen,et al.  Topological degree for a mean field equation on Riemann surfaces , 2003 .

[25]  P. Salvatore Configuration spaces on the sphere and higher loop spaces , 2003, math/0303290.

[26]  Yong Yang,et al.  Solitons in Field Theory and Nonlinear Analysis , 2001 .

[27]  Congming Li,et al.  Prescribing scalar curvature on Sn , 2001 .

[28]  J. Jost,et al.  Analytic aspects of the Toda system: I. A Moser‐Trudinger inequality , 2000, math-ph/0011039.

[29]  Guofang Wang Moser-Trudinger inequalities and Liouville systems , 1999 .

[30]  Yanyan Li Harnack Type Inequality: the Method of Moving Planes , 1999 .

[31]  J. Jost,et al.  Existence results for mean field equations , 1997, dg-ga/9710023.

[32]  J. Bolton,et al.  Some geometrical aspects of the 2-dimensional Toda equations , 1997 .

[33]  G. Dunne Self-Dual Chern-Simons Theories , 1994, hep-th/9410065.

[34]  Congming Li,et al.  Prescribing gaussian curvatures on surfaces with conical singularities , 1991 .

[35]  M. Mimura,et al.  Topology of Lie Groups, I and II , 1991 .

[36]  S. Chern,et al.  Harmonic maps of the two-sphere into a complex Grassmann manifold II* , 1987 .

[37]  Michael Struwe,et al.  On the evolution of harmonic mappings of Riemannian surfaces , 1985 .

[38]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[39]  M. Nakaoka Cohomology theory of a complex with a transformation of prime period and its applications , 1956 .

[40]  E. Calabi ISOMETRIC IMBEDDING OF COMPLEX MANIFOLDS , 1953 .

[41]  G. Tarantello Selfdual Gauge Field Vortices , 2008 .

[42]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[43]  Haim Brezis,et al.  Uniform estimates and blow–up behavior for solutions of −δ(u)=v(x)eu in two dimensions , 1991 .

[44]  M. Struwe Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[45]  F. Cohen The homology of Cn+1-Spaces, n≥0 , 1976 .