Relationships Between Quantum IND-CPA Notions

An encryption scheme is called indistinguishable under chosen plaintext attack (short IND-CPA) if an attacker cannot distinguish the encryptions of two messages of his choice. There are other variants of this de nition but they all turn out to be equivalent in the classical case. In this paper, we give a comprehensive overview of these di erent variants of IND-CPA for symmetric encryption schemes in the quantum setting. We investigate the relationships between these notions and prove various equivalences, implications, non-equivalences, and non-implications between these variants.

[1]  Mark Zhandry,et al.  A note on the quantum collision and set equality problems , 2013, Quantum Inf. Comput..

[2]  Scott Aaronson,et al.  Quantum lower bounds for the collision and the element distinctness problems , 2004, JACM.

[3]  Dominique Unruh,et al.  Computationally Binding Quantum Commitments , 2016, EUROCRYPT.

[4]  Mihir Bellare,et al.  A concrete security treatment of symmetric encryption , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[5]  Stacey Jeffery,et al.  Quantum Homomorphic Encryption for Circuits of Low T-gate Complexity , 2014, CRYPTO.

[6]  Rüdiger Schack,et al.  Concrete Security Against Adversaries with Quantum Superposition Access to Encryption and Decryption Oracles , 2016, ArXiv.

[7]  María Naya-Plasencia,et al.  Breaking Symmetric Cryptosystems Using Quantum Period Finding , 2016, CRYPTO.

[8]  Ehsan Ebrahimi,et al.  On the Security Notions for Encryption in a Quantum World , 2020, IACR Cryptol. ePrint Arch..

[9]  Dominique Unruh,et al.  Quantum Proofs of Knowledge , 2012, IACR Cryptol. ePrint Arch..

[10]  Mark Zhandry,et al.  Quantum Immune One-Time Memories , 2020, IACR Cryptol. ePrint Arch..

[11]  Mark Zhandry,et al.  Quantum-Secure Message Authentication Codes , 2013, IACR Cryptol. ePrint Arch..

[12]  Hidenori Kuwakado,et al.  Quantum distinguisher between the 3-round Feistel cipher and the random permutation , 2010, 2010 IEEE International Symposium on Information Theory.

[13]  Tommaso Gagliardoni,et al.  Semantic Security and Indistinguishability in the Quantum World , 2015, IACR Cryptol. ePrint Arch..

[14]  Hidenori Kuwakado,et al.  Security on the quantum-type Even-Mansour cipher , 2012, 2012 International Symposium on Information Theory and its Applications.

[15]  Alexander Russell,et al.  Quantum-Access-Secure Message Authentication via Blind-Unforgeability , 2020, EUROCRYPT.

[16]  Andris Ambainis,et al.  Quantum security proofs using semi-classical oracles , 2019, IACR Cryptol. ePrint Arch..

[17]  Mark Zhandry,et al.  Secure Signatures and Chosen Ciphertext Security in a Quantum Computing World , 2013, CRYPTO.

[18]  Tommaso Gagliardoni,et al.  Quantum Indistinguishability for Public Key Encryption. , 2020 .

[19]  Ivan Damgård,et al.  Superposition Attacks on Cryptographic Protocols , 2011, ICITS.

[20]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[21]  John Watrous Zero-Knowledge against Quantum Attacks , 2009, SIAM J. Comput..

[22]  Dominique Unruh,et al.  Post-Quantum Security of the CBC, CFB, OFB, CTR, and XTS Modes of Operation , 2016, PQCrypto.

[23]  Mark Zhandry,et al.  A Note on Quantum-Secure PRPs , 2016, IACR Cryptol. ePrint Arch..

[24]  Marc Kaplan,et al.  Superposition Attack on OT Protocols , 2020, IACR Cryptol. ePrint Arch..

[25]  Elham Kashefi,et al.  Comparison of quantum oracles , 2002 .