Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays

Thin film transistor (TFT) backplanes are being continuously researched for new applications such as active-matrix organic light emitting diode (AMOLED) displays, sensors, and x-ray imagers. However, the circuits implemented in presently available fabrication technologies including poly silicon (poly-Si), hydrogenated amorphous silicon (a-Si:H), and organic semiconductor, are prone to spatial and/or temporal non-uniformities. While current-programmed active matrix (AM) can tolerate mismatches and nonuniformity caused by aging, the long settling time is a significant limitation. Consequently, acceleration schemes are needed and are proposed to reduce the settling time to 20 μs. This technique is used in the development of a pixel circuit and system for biomedical imager and sensor. Here, a metal-insulator-semiconductor (MIS) capacitor is adopted for adjustment and boost of the circuit gain. Thus, the new pixel architecture supports multi-modality imaging for a wide range of applications with various input signal intensities. Also, for applications with lower current levels, a fast current-mode line driver is developed based on positive feedback which controls the effect of the parasitic capacitance. The measured settling time of a conventional current source is around 2 ms for a 100-nA input current and 200-pF parasitic capacitance whereas it is less than 4 μs for the driver presented here. For displays needed in mobile devices such as cell phones and DVD players, another new driving scheme is devised that provides for a high temporal stability, low-power consumption, high tolerance of temperature variations, and high resolution. The performance of the new driving scheme is demonstrated in a 9-inch fabricated display intended for DVD players. Also, a multi-modal imager pixel circuit is developed using this technique to provide

[1]  Gong Gu,et al.  Moisture induced electron traps and hysteresis in pentacene-based organic thin-film transistors , 2008 .

[2]  John Martin Shannon,et al.  Improved optical feedback for OLED differential ageing correction , 2005 .

[3]  A. Nathan,et al.  Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs , 2004, IEEE Electron Device Letters.

[4]  J. K. Fidler,et al.  Analogue IC Design: the Current-Mode Approach , 1991 .

[5]  Chung Kun Song,et al.  Instability of threshold voltage under constant bias stress in pentacene thin film transistors employing polyvinylphenol gate dielectric , 2008 .

[6]  Ya-Hsiang Tai,et al.  INSTABILITY MECHANISMS FOR THE HYDROGENATED AMORPHOUS-SILICON THIN-FILM TRANSISTORS WITH NEGATIVE AND POSITIVE BIAS STRESSES ON THE GATE ELECTRODES , 1995 .

[7]  Xu,et al.  Degradation mechanism of small molecule-based organic light-emitting devices , 1999, Science.

[8]  A. Nathan,et al.  A novel a-Si:H AMOLED pixel circuit based on short-term stress stability of a-Si:H TFTs , 2005, IEEE Electron Device Letters.

[9]  Seung-Eun Lee,et al.  Development of a Novel Current Controlled Organic Light Emitting Diode (OLED) Display Driver IC(Regular Section) , 2002 .

[10]  A. Nathan,et al.  Absence of defect state creation in nanocrystalline silicon thin film transistors deduced from constant current stress measurements , 2007 .

[11]  G.R. Chaji,et al.  Dynamic-effect compensating technique for stable a-Si:H AMOLED displays , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[12]  Hsiao-Wen Zan,et al.  The Effects of Drain-Bias on the Threshold Voltage Instability in Organic TFTs , 2008, IEEE Electron Device Letters.

[13]  Peyman Servati,et al.  Modeling of the static and dynamic behavior of hydrogenated amorphous silicon thin-film transistors , 2002 .

[14]  Jin Jang,et al.  P‐72: A Novel Pixel Circuit for Active‐Matrix Organic Light‐Emitting Diodes , 2003 .

[15]  Arokia Nathan,et al.  A Sub-μA fast-settling current-programmed pixel circuit for AMOLED displays , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.

[16]  Kapil Sakariya,et al.  Pixel circuits and drive schemes for large-area a-Si AMOLED displays , 2005 .

[17]  Peyman Servati,et al.  A new driving scheme for the stable operation of the 2-TFT a-Si AMOLED pixel , 2005 .

[18]  T. Jackson,et al.  Stacked pentacene layer organic thin-film transistors with improved characteristics , 1997, IEEE Electron Device Letters.

[19]  Y. Cao,et al.  Lifetime and degradation effects in polymer light-emitting diodes , 1999 .

[20]  G.R. Chaji,et al.  Low-Power Low-Cost Voltage-Programmed a-Si:H AMOLED Display for Portable Devices , 2008, Journal of Display Technology.

[21]  R. H. Bruce,et al.  Polysilicon TFT circuit design and performance , 1992 .

[22]  Choong-Ki Kim,et al.  A new a-Si:H thin-film transistor pixel circuit for active-matrix organic light-emitting diodes , 2003, IEEE Electron Device Letters.

[23]  Ya-Hsiang Tai,et al.  A Statistical Model for Simulating the Effect of LTPS TFT Device Variation for SOP Applications , 2007, Journal of Display Technology.

[24]  Gordon W. Roberts,et al.  The current conveyor: history, progress and new results , 1990 .

[25]  A. Nathan,et al.  A fast settling current driver based on the CCII for AMOLED displays , 2005, Journal of Display Technology.

[26]  Dae-Gyu Moon,et al.  P-82: Top Emission Organic Light Emitting Diode with Ni Anode , 2003 .

[27]  Eric A. Vittoz,et al.  Charge injection in analog MOS switches , 1987 .

[28]  A. Nathan,et al.  A Driving Scheme for Active-Matrix Organic Light-Emitting Diode Displays Based on Current Feedback , 2006, Journal of Display Technology.

[29]  Jan Birnstock,et al.  High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers , 2004 .

[30]  J. R. Hughes,et al.  Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors , 1989 .

[31]  Alan B. Grebene,et al.  Analog Integrated Circuit Design , 1978 .

[32]  S. Jafarabadiashtiani,et al.  Pixel Circuits and Driving Schemes for Active-Matrix Organic Light-Emitting Diode Displays , 2007 .

[33]  Jerzy Kanicki,et al.  Active-Matrix Organic Light-Emitting Displays , 2004 .

[34]  Arokia Nathan,et al.  High-precision, fast current source for large-area current-programmed a-Si flat panels , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[35]  Hoi Sing Kwok,et al.  27.4: Top‐emitting Organic Light‐Emitting Diode using Nanometer Platinum Layers as Hole Injector , 2003 .

[36]  J. Bharathan,et al.  4.4L: Late‐News Paper: Ink‐Jet Printing Technology and Its Application in Polymer Multicolor EL Displays , 1998 .

[37]  Yojiro Matsueda,et al.  Poly-Si driving circuits for organic EL displays , 2001, IS&T/SPIE Electronic Imaging.

[38]  Y. Nemirovsky,et al.  1/ f noise reduction of metal‐oxide‐semiconductor transistors by cycling from inversion to accumulation , 1991 .

[39]  Min-Koo Han,et al.  A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs , 2004, IEEE Electron Device Letters.

[40]  Stephen R. Forrest,et al.  Design of flat-panel displays based on organic light-emitting devices , 1998 .

[41]  R. Street,et al.  Hydrogenated amorphous silicon: Index , 1991 .

[42]  A. Nathan,et al.  Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays , 2007, IEEE Transactions on Electron Devices.

[43]  I. Blevis,et al.  Digital radiology using active matrix readout of amorphous selenium: construction and evaluation of a prototype real-time detector. , 1997, Medical physics.

[44]  Hany Aziz,et al.  Reliability and degradation of small molecule-based organic light-emitting devices (OLEDs) , 2002 .

[45]  Frank R. Libsch,et al.  4.2: TFT AMOLED Pixel Circuits and Driving Methods , 2003 .

[46]  A. Nathan,et al.  Electrical Compensation of OLED Luminance Degradation , 2007, IEEE Electron Device Letters.

[47]  A. Nathan,et al.  Driving schemes for a-Si and LTPS AMOLED displays , 2005, Journal of Display Technology.

[48]  Marshall,et al.  Role of hydrogen in the formation of metastable defects in hydrogenated amorphous silicon. , 1989, Physical review. B, Condensed matter.

[49]  Yoshinao Kobayashi,et al.  An Accelerative Current-Programming Method for AM-OLED , 2005, IEICE Trans. Electron..

[50]  A. Hassibi,et al.  A programmable electrochemical biosensor array in 0.18 /spl mu/m standard CMOS , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[51]  E. Klumperink,et al.  Reducing MOSFET 1/f noise and power consumption by switched biasing , 1999, IEEE Journal of Solid-State Circuits.

[52]  A. Nathan,et al.  Markov model for threshold-voltage shift in amorphous silicon TFTs for variable gate bias , 2005, IEEE Electron Device Letters.

[53]  David A. Johns,et al.  Analog Integrated Circuit Design , 1996 .

[54]  William C. Lenhart,et al.  Operational degradation of organic light-emitting diodes: Mechanism and identification of chemical products , 2007 .

[55]  Chul-Hi Han,et al.  A new pixel circuit for active matrix organic light emitting diodes , 2002, IEEE Electron Device Letters.

[56]  Sigurd Wagner,et al.  High hole and electron field effect mobilities in nanocrystalline silicon deposited at 150 °C , 2003 .

[57]  Arokia Nathan,et al.  Organic thin-film transistor integration using silicon nitride gate dielectric , 2007 .

[59]  Tetsuo Tsutsui,et al.  Voltage shift phenomena introduced by reverse-bias application in multilayer organic light emitting diodes , 2000 .

[60]  Larry E. Antonuk,et al.  Development of thin-film flat-panel arrays for diagnostic and radiotherapy imaging , 1992, Medical Imaging.

[61]  Yen-Chung Lin,et al.  A novel current-scaling a-Si:H TFTs pixel electrode circuit for AM-OLEDs , 2005, IEEE Transactions on Electron Devices.

[62]  P Servati,et al.  A 3-TFT current-programmed pixel circuit for active-matrix organic light-emitting diode displays , 2005 .

[63]  Jerzy Kanicki,et al.  Bias‐stress‐induced stretched‐exponential time dependence of charge injection and trapping in amorphous thin‐film transistors , 1993 .

[64]  Arokia Nathan,et al.  Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays , 2006 .

[65]  Arokia Nathan,et al.  Stability of nanocrystalline silicon bottom-gate thin film transistors with silicon nitride gate dielectric , 2007 .

[66]  G.R. Chaji,et al.  A novel driving scheme for high-resolution large-area a-Si:H AMOLED displays , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[67]  W. Zhao,et al.  Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy. , 1999, Medical physics.

[68]  Tiao-Yuan Huang,et al.  High-Performance and Low-Temperature-Compatible p-Channel Polycrystalline-Silicon TFTs Using Hafnium-Silicate Gate Dielectric , 2007, IEEE Electron Device Letters.

[69]  Jeff H. Chang Sensor System for High Throughput Fluorescent Bio-assays , 2007 .

[70]  Robert S. Howell,et al.  Polysilicon TFT technology for active matrix OLED displays , 2001 .

[71]  A. Nathan,et al.  Low-Cost Stable a-Si:H AMOLED Display for Portable Applications , 2006, 2006 IEEE North-East Workshop on Circuits and Systems.

[72]  Karim S. Karim,et al.  Noise optimization of an active pixel sensor for real-time digital x-ray fluoroscopy , 2007, SPIE International Symposium on Fluctuations and Noise.

[73]  Matthew W. Moskewicz,et al.  A Polysilicon Active Matrix Organic Light Emitting Diode Display with Integrated Drivers , 1999 .

[74]  Shahin Jafarabadi-Ashtiani,et al.  A Driving Scheme for AMOLED Displays Based on Current Feedback , 2006, IEEE Custom Integrated Circuits Conference 2006.

[75]  G. Pearce,et al.  Analogue IC Design: the Current Mode Approach , 1992 .

[76]  H. Watanabe,et al.  Statistics of Grain Boundaries in Polysilicon , 2007, IEEE Transactions on Electron Devices.

[77]  A. Nathan,et al.  Pixel architectures for digital imaging using amorphous silicon technology , 2003 .

[78]  Jerzy Kanicki,et al.  Electrical Instability of Hydrogenated Amorphous Silicon Thin-Film Transistors for Active-Matrix Liquid-Crystal Displays , 1998 .

[79]  A. Nathan,et al.  Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic , 2004, IEEE Journal of Solid-State Circuits.

[80]  Arokia Nathan,et al.  Three-TFT image sensor for real-time digital X-ray imaging , 2006 .

[81]  P. Heremans,et al.  Design of an organic pixel addressing circuit for an active-matrix OLED display , 2002 .

[82]  A. Nathan,et al.  A driving scheme for active-matrix organic light-emitting diode displays based on feedback , 2006, Journal of Display Technology.

[83]  Arokia Nathan,et al.  A Current-Mode Comparator for Digital Calibration of Amorphous Silicon AMOLED Displays , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[84]  Kapil Sakariya,et al.  Threshold voltage instability of amorphous silicon thin-film transistors under constant current stress , 2005 .

[85]  F. Taghibakhsh,et al.  High dynamic range 2-TFT amplified pixel sensor architecture for digital mammography tomosynthesis , 2007, IET Circuits Devices Syst..

[86]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[87]  Arokia Nathan,et al.  Temperature characterization of a-Si:H thin-film transistor for analog circuit design using analog hardware description language modeling , 2006 .

[88]  Janice K. Mahon 5.1: Invited Paper: History and Status of Organic Light Emitting Device (OLED) Technology for Vehicular Applications , 2001 .