A meeting scheduling problem respecting time and space
暂无分享,去创建一个
Jörg-Rüdiger Sack | Rolf Klein | Doron Nussbaum | Florian Berger | Jiehua Yi | R. Klein | D. Nussbaum | Jiehua Yi | Jörg-Rüdiger Sack | Florian Berger
[1] J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .
[2] David Rappaport. Computing the Furthest Site Voronoi Diagram for a Set of Discs (Preliminary Report) , 1989, WADS.
[3] Jörg-Rüdiger Sack,et al. A Meeting Scheduling Problem Respecting Time and Space , 2008, AAIM.
[4] Rolf Klein,et al. The Farthest Color Voronoi Diagram and Related Problems , 2001 .
[5] Jean Oh,et al. Getting from here to there: interactive planning and agent execution for optimizing travel , 2002, AAAI/IAAI.
[6] Franca Rinaldi,et al. Scheduling School Meetings , 2006, PATAT.
[7] J. Matoušek,et al. On geometric optimization with few violated constraints , 1994, SCG '94.
[8] Sandip Sen,et al. Developing an Automated Distributed Meeting Scheduler , 1997, IEEE Expert.
[9] Max J. Egenhofer,et al. Modeling Moving Objects over Multiple Granularities , 2002, Annals of Mathematics and Artificial Intelligence.
[10] Franz Aurenhammer,et al. Voronoi Diagrams , 2000, Handbook of Computational Geometry.
[11] Michael A. Trick,et al. The timetable constrained distance minimization problem , 2006, Ann. Oper. Res..
[12] Rolf Klein,et al. The weighted farthest color Voronoi diagram on trees and graphs , 2004, Comput. Geom..
[13] Bernard Chazelle,et al. On linear-time deterministic algorithms for optimization problems in fixed dimension , 1996, SODA '93.
[14] Eiji Kamioka,et al. An Efficient and Privacy-Aware Meeting Scheduling Scheme Using Common Computational Space , 2007, IEICE Trans. Inf. Syst..
[15] Daniel L. Silver,et al. A distributed multi-agent meeting scheduler , 2008, J. Comput. Syst. Sci..
[16] Micha Sharir,et al. A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.
[17] Jörg-Rüdiger Sack,et al. Intelligent map agents — An ubiquitous personalized GIS ☆ , 2007 .
[18] Emo Welzl,et al. Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.
[19] Nimrod Megiddo,et al. The Weighted Euclidean 1-Center Problem , 1983, Math. Oper. Res..
[20] Rebecca Y. M. Wong,et al. Optimizing agent-based meeting scheduling through preference estimation , 2003 .
[21] Jian Wang,et al. Scheduling Meetings in Distance Learning , 2007, APPT.
[22] Nicholas R. Jennings,et al. Agent-based meeting scheduling: a design and implementation , 1995 .
[23] Tu Bao Ho,et al. An agent-based approach to solve dynamic meeting scheduling problems with preferences , 2007, Eng. Appl. Artif. Intell..
[24] Thomas Ottmann,et al. Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.
[25] Kurt Mehlhorn,et al. Furthest Site Abstract Voronoi Diagrams , 2001, Int. J. Comput. Geom. Appl..