Reexamination of Yuknessia from the Cambrian of China and first report of Fuxianospira from North America

Abstract. Yuknessia Walcott, 1919 recently was transferred from the green algae to the Phylum Hemichordata on the basis of new details observed for the type species, Y. simplex, from the Burgess Shale Formation (Cambrian Stage 5) of British Columbia. This has prompted reexamination of material attributed to Yuknessia from various Cambrian localities in South China. Findings preclude both a Yuknessia and a hemichordate affinity for all of the Chinese study material, and most of this material is formally transferred to Fuxianospira Chen and Zhou, 1997, a taxon common in the Chengjiang biota. Comparable material from the Cambrian Marjum, Wheeler, and Burgess Shale formations of North America is also assigned to Fuxianospira, and this reassignment expands both the paleogeographic and stratigraphic range of this taxon. All aspects of the study specimens, including details obtained from scanning electron microscopy, are consistent with an algal affinity, as proposed in the original descriptions of the Chinese material.

[1]  Sandra Maurer The Cambrian Fossils Of Chengjiang China The Flowering Of Early Animal Life , 2016 .

[2]  M. Steiner,et al.  Graptolite (Hemichordata, Pterobranchia) preservation and identification in the Cambrian Series 3 , 2015 .

[3]  S. Xiao,et al.  RESOLVING THREE-DIMENSIONAL AND SUBSURFICIAL FEATURES OF CARBONACEOUS COMPRESSIONS AND SHELLY FOSSILS USING BACKSCATTERED ELECTRON SCANNING ELECTRON MICROSCOPY (BSE-SEM) , 2015 .

[4]  J. Schiffbauer,et al.  A reexamination of Yuknessia from the Cambrian of British Columbia and Utah , 2015, Journal of Paleontology.

[5]  A. J. Kaufman,et al.  A unifying model for Neoproterozoic–Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression , 2014, Nature Communications.

[6]  B. Pratt,et al.  Phosphatized coprolites from the middle Cambrian (Stage 5) Duyun fauna of China , 2014 .

[7]  J. Kasbohm,et al.  Taphonomic traits of clay-hosted early Cambrian Burgess Shale-type fossil Lagerstätten in South China , 2014 .

[8]  G. Retallack Affirming life aquatic for the Ediacara biota in China and Australia: COMMENT , 2014 .

[9]  A. Knoll Paleobiological perspectives on early eukaryotic evolution. , 2014, Cold Spring Harbor perspectives in biology.

[10]  L. Walters,et al.  A safe alternative to invasive Caulerpa taxifolia (Chlorophtya)? Assessing aquarium-release invasion potential of aquarium strains of the macroalgal genus Chaetomorpha (Chlorophyta) , 2013, Biological Invasions.

[11]  M. Droser,et al.  Affirming life aquatic for the Ediacara biota in China and Australia , 2013 .

[12]  L. Graham,et al.  Resistance of Filamentous Chlorophycean, Ulvophycean, and Xanthophycean Algae to Acetolysis: Testing Proterozoic and Paleozoic Microfossil Attributions , 2013, International Journal of Plant Sciences.

[13]  W. Powell,et al.  MORPHOLOGICALLY SIMPLE ENIGMATIC FOSSILS FROM THE WHEELER FORMATION: A COMPARISON WITH DEFINITIVE ALGAL FOSSILS , 2012 .

[14]  J. Schiffbauer,et al.  TAPHONOMY OF THE UPPER EDIACARAN ENIGMATIC RIBBONLIKE FOSSIL SHAANXILITHES , 2012 .

[15]  J. Schiffbauer,et al.  Preservational modes in the Ediacaran Gaojiashan Lagerstätte: Pyritization, aluminosilicification, and carbonaceous compression , 2012 .

[16]  N. Butterfield,et al.  Macro- and microfossils of the Mount Cap Formation (Early and Middle Cambrian, Northwest Territories). , 2012 .

[17]  R. Robison,et al.  Exceptionally preserved biota from a carbonate lithofacies, Huaqiao Formation (Cambrian: Drumian Stage), Hunan, China , 2012 .

[18]  Fu Xiao-ping DISCOVERY OF MACROALGAE FROM THE CAMBRIAN TSINGHSUTUNG FORMATION OF GUIZHOU , 2012 .

[19]  J. Schiffbauer,et al.  Taphonomic study of Ediacaran organic-walled fossils confirms the importance of clay minerals and pyrite in Burgess Shale−type preservation , 2011 .

[20]  Yuan-long Zhao,et al.  New macroalgal fossils of the Kaili Biota in Guizhou Province, China , 2011 .

[21]  D. Briggs,et al.  BURGESS SHALE-TYPE PRESERVATION: A COMPARISON OF NARAOIIDS (ARTHROPODA) FROM THREE CAMBRIAN LOCALITIES , 2010 .

[22]  Guo Junfeng FOSSIL MACROSCOPIC ALGAE FROM THE YANJIAHE FORMATION,TERRENEUVIAN OF THE THREE GORGES AREA,SOUTH CHINA , 2010 .

[23]  Fu Xiao-ping MACROALGAE FROM THE BALANG FORMATION OF THE DUYUNIAN(CAMBRIAN),GUIZHOU PROVINCE , 2010 .

[24]  D. Briggs,et al.  Elemental mapping of exceptionally preserved ‘carbonaceous compression’ fossils , 2009 .

[25]  A. Knoll,et al.  Tubular Compression Fossils from the Ediacaran Nama Group, Namibia , 2009, Journal of Paleontology.

[26]  J. Zalasiewicz,et al.  Ubiquitous Burgess Shale-style 'clay templates' in low-grade metamorphic mudrocks , 2008 .

[27]  D. Briggs,et al.  Cambrian Burgess Shale–type deposits share a common mode of fossilization , 2008 .

[28]  Donald A. Jackson,et al.  Paleoecology of the Greater Phyllopod Bed community, Burgess Shale , 2008 .

[29]  G. Storrs MORE SOFT-BODIED ANIMALS AND ALGAE FROM THE MIDDLE CAMBRIAN OF UTAH AND BRITISH COLUMBIA ' , 2008 .

[30]  N. Butterfield,et al.  FOSSIL DIAGENESIS IN THE BURGESS SHALE , 2007 .

[31]  S. Gabbott,et al.  Bromalites from the Soom Shale Lagerstätte (Upper Ordovician) of South Africa: palaeoecological and palaeobiological implications , 2006 .

[32]  Maoyan Zhu,et al.  Fossilization modes in the Chengjiang Lagerstätte (Cambrian of China): testing the roles of organic preservation and diagenetic alteration in exceptional preservation , 2005 .

[33]  Yuan-long Zhao,et al.  Lower Cambrian Burgess Shale-type fossil associations of South China , 2005 .

[34]  M. Steiner,et al.  Middle Cambrian pterobranchs and the Question: What is a graptolite? , 2005 .

[35]  D. Siveter,et al.  Preservation of Early Cambrian animals of the Chengjiang biota , 2004 .

[36]  D. Siveter,et al.  The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life , 2004 .

[37]  Gao Hui Members of the Chengjiang Biota from the Lower Cambrian Niutitang Formation, Zunyi County, Guizhou Province, China , 2003 .

[38]  J. Chan,et al.  Helical Microtubule Arrays and Spiral Growth , 2002, The Plant Cell Online.

[39]  Alian Wang,et al.  Raman Spectroscopic Characterization of Phyllosilicates , 2002 .

[40]  A. Knoll,et al.  MACROSCOPIC CARBONACEOUS COMPRESSIONS IN A TERMINAL PROTEROZOIC SHALE: A SYSTEMATIC REASSESSMENT OF THE MIAOHE BIOTA, SOUTH CHINA , 2002, Journal of Paleontology.

[41]  R. Petrovich Mechanisms of Fossilization of the Soft-Bodied and Lightly Armored Faunas of the Burgess Shale and of Some Other Classical Localities , 2001 .

[42]  Zhang Wen-tang,et al.  Stratigraphy, palaeontology, and depositional setting of the Chengjiang Lagerstätte (Lower Cambrain), Yunnan, China , 2001 .

[43]  D. Palmer The Chengjiang Fauna: Exceptionally well-preserved animals from 530 million years ago , 2000 .

[44]  Yuan Jin,et al.  ON THE KAILI FORMATION , 1999 .

[45]  Orr,et al.  Cambrian burgess shale animals replicated in clay minerals , 1998, Science.

[46]  C. Junyuan,et al.  Biology of the Chengjiang Fauna , 1997 .

[47]  N. Butterfield,et al.  Burgess Shale-type preservation of both non-mineralizing and ‘shelly’ Cambrian organisms from the Mackenzie Mountains, northwestern Canada , 1996, Journal of Paleontology.

[48]  N. Butterfield Secular distribution of Burgess‐Shale‐type preservation , 1995 .

[49]  P. Harrison,et al.  Seaweed ecology and physiology: Morphology, life histories, and morphogenesis , 1994 .

[50]  Yuan-long Zhao,et al.  Noncalcareous algae of kaili fauna in Taijiang, Guizhou , 1994 .

[51]  J. Cracraft,et al.  The Early Evolution of Metazoa and the Significance of Problematic Taxa , 2009 .

[52]  S. Morris,et al.  More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia , 1988 .

[53]  R. Preston,et al.  Cell wall organization and wall growth in the filamentous green algae Cladophora and Chaetomorpha II. Spiral structure and spiral growth , 1961, Proceedings of the Royal Society of London. Series B. Biological Sciences.