Lectures on Lipschitz analysis
暂无分享,去创建一个
[1] Charles B. Morrey,et al. On the solutions of quasi-linear elliptic partial differential equations , 1938 .
[2] Hydrodynamique en théorie unitaire pentadimensionnelle , 1941 .
[3] H Whitney. Algebraic Topology and Integration Theory. , 1947, Proceedings of the National Academy of Sciences of the United States of America.
[4] H. Whitney. Geometric Integration Theory , 1957 .
[5] F. Almgren,et al. The homotopy groups of the integral cycle groups , 1962 .
[6] L. Schwartz. Théorie des distributions , 1966 .
[7] A. V. Arkhangel’skiǐ,et al. MAPPINGS AND SPACES , 1966 .
[8] Homeomorphic solutions of a Beltrami differential equation , 1966 .
[9] Takesi Isiwata,et al. Mappings and spaces , 1967 .
[10] Yu. G. Reshetnyak. Space mappings with bounded distortion , 1967 .
[11] Jussi Väisälä,et al. Lectures on n-Dimensional Quasiconformal Mappings , 1971 .
[12] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[13] Olli Lehto,et al. Quasiconformal mappings in the plane , 1973 .
[14] J. Luukkainen,et al. Elements of Lipschitz topology , 1977 .
[15] L. Siebenmann. ON COMPLEXES THAT ARE LIPSCHITZ MANIFOLDS , 1979 .
[16] D. Sullivan. HYPERBOLIC GEOMETRY AND HOMEOMORPHISMS , 1979 .
[17] Pakka Tukia. A quasiconformal group not isomorphic to a Möbius group , 1981 .
[18] J. Väisälä,et al. Lipschitz and quasiconformal approximation and extension , 1981 .
[19] Jan van Mill,et al. On an internal property of absolute retracts, II , 1982 .
[20] T. Iwaniec. Regularity theorems for solutions of partial differential equations for quasiconformal mappings in several dimmensions , 1982 .
[21] Nicolae Teleman. The index of signature operators on Lipschitz manifolds , 1983 .
[22] An analytic proof of Novikov’s theorem on rational Pontrjagin classes , 1983 .
[23] O. Lehto,et al. Univalent functions and Teichm?uller space , 1986 .
[24] J. Lindenstrauss,et al. Extensions of lipschitz maps into Banach spaces , 1986 .
[25] G. David. Solutions de l'équation de Beltrami , 1987 .
[26] M. Gromov,et al. Monotonicity of the volume of intersection of balls , 1987 .
[27] O. Martio,et al. Elliptic equations and maps of bounded length distortion , 1988 .
[28] L. Evans. Measure theory and fine properties of functions , 1992 .
[29] Aarno Hohti. ON ABSOLUTE LIPSCHITZ NEIGHBOURHOOD RETRACTS, MIXERS, AND QUASICONVEXITY , 1993 .
[30] J. Lafontaine,et al. Holomorphic curves in symplectic geometry , 1994 .
[31] Pertti Mattila,et al. Geometry of sets and measures in Euclidean spaces , 1995 .
[32] S. Semmes. Finding Structure in Sets with Little Smoothness , 1995 .
[33] Piotr Hajłasz,et al. @ 1996 Kluwer Academic Publishers. Printed in the Netherlands. Sobolev Spaces on an Arbitrary Metric Space , 1994 .
[34] S. Semmes. Good metric spaces without good parameterizations , 1996 .
[35] Exterior d, the Local Degree, and Smoothability , 1996 .
[36] Stephen Semmes,et al. Fractured fractals and broken dreams : self-similar geometry through metric and measure , 1997 .
[37] Urs Lang,et al. Kirszbraun's Theorem and Metric Spaces of Bounded Curvature , 1997 .
[38] N. Weaver. Lipschitz algebras and derivations II: exterior differentiation , 1998, math/9807096.
[40] B. Kleiner. The local structure of length spaces with curvature bounded above , 1999 .
[41] Jeff Cheeger,et al. Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .
[42] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[43] U. Lang,et al. Extensions of Lipschitz maps into Hadamard spaces , 2000 .
[44] BLD-mappings in $W^{2,2}$ are locally invertible , 2000 .
[45] Pekka Koskela,et al. Sobolev met Poincaré , 2000 .
[46] Stephen Semmes,et al. Some Novel Types of Fractal Geometry , 2001 .
[47] D. Burago,et al. A Course in Metric Geometry , 2001 .
[48] J. Heinonen,et al. On the locally branched Euclidean metric gauge , 2002 .
[49] P. Koskela. GEOMETRIC FUNCTION THEORY AND NON-LINEAR ANALYSIS (Oxford Mathematical Monographs) By TADEUSZ IWANIEC and GAVEN MARTIN: 552 pp., £75.00, ISBN 0-19-85029-4 (Oxford University Press, 2001) , 2002 .
[50] Julia Heinonent. The Branch Set of a Quasiregular Mapping , 2002 .
[51] One-dimensional sets and planar sets are aspherical , 2002 .
[53] Tadeusz Iwaniec,et al. Geometric Function Theory and Non-linear Analysis , 2002 .
[54] J. Heinonen,et al. Geometric branched covers between generalized manifolds , 2002 .
[55] The branch set of a quasiregular mapping , 2003, math/0304333.
[56] S. Keith. A differentiable structure for metric measure spaces , 2004 .
[57] S. Keith. Measurable differentiable structures and the Poincaré inequality , 2004 .
[58] M. Crandall,et al. A TOUR OF THE THEORY OF ABSOLUTELY MINIMIZING FUNCTIONS , 2004 .
[59] The Stepanov differentiability theorem in metric measure spaces , 2004 .
[60] J. Harrison. Geometric Representations of Currents and Distributions , 2004 .
[61] H. O. Erdin. Characteristic Classes , 2004 .
[62] James R. Lee,et al. Extending Lipschitz functions via random metric partitions , 2005 .
[63] The quasiconformal Jacobian problem , 2006 .