A Multiscale Method for Highly Oscillatory Dynamical Systems Using a Poincaré Map Type Technique

We propose a new heterogeneous multiscale method (HMM) for computing the effective behavior of a class of highly oscillatory ordinary differential equations (ODEs). Without the need for identifying hidden slow variables, the proposed method is constructed based on the following ideas: a nonstandard splitting of the vector field (the right hand side of the ODEs); comparison of the solutions of the split equations; construction of effective paths in the state space whose projection onto the slow subspace has the correct dynamics; and a novel on-the-fly filtering technique for achieving a high order accuracy. Numerical examples are given.

[1]  Eric Vanden Eijnden Numerical techniques for multi-scale dynamical systems with stochastic effects , 2003 .

[2]  Björn Engquist,et al.  Oscillatory Systems with Three Separated Time Scales: Analysis and Computation , 2012 .

[3]  Björn Engquist,et al.  A Multiscale Method Coupling Network and Continuum Models in Porous Media I: Steady-State Single Phase Flow , 2012, Multiscale Model. Simul..

[4]  A. Iserles,et al.  Acta numerica 1992 , edited by A. Iserles. Pp. 407. £19.95 1992. ISBN 0-521-41026-6 (Cambridge University Press) , 1993, The Mathematical Gazette.

[5]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[6]  Dario Bambusi,et al.  On Metastability in FPU , 2006 .

[7]  Eric Vanden-Eijnden,et al.  Accelerated Simulation of a Heavy Particle in a Gas of Elastic Spheres , 2008, Multiscale Model. Simul..

[8]  Linda R. Petzold,et al.  Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.

[9]  Ioannis G. Kevrekidis,et al.  Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..

[10]  Björn Engquist,et al.  Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..

[11]  A. Mielke Analysis, modeling and simulation of multiscale problems , 2006 .

[12]  Jerrold E. Marsden,et al.  Nonintrusive and Structure Preserving Multiscale Integration of Stiff ODEs, SDEs, and Hamiltonian Systems with Hidden Slow Dynamics via Flow Averaging , 2009, Multiscale Model. Simul..

[13]  H. Weitzner,et al.  Perturbation Methods in Applied Mathematics , 1969 .

[14]  H. Kreiss Problems with Different Time Scales for Ordinary Differential Equations , 1979 .

[15]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[16]  Björn Engquist,et al.  A Multiscale Method Coupling Network and Continuum Models in Porous Media II—Single- and Two-Phase Flows , 2013 .

[17]  Björn Engquist,et al.  Numerical Multiscale Methods for Coupled Oscillators , 2009, Multiscale Model. Simul..

[18]  Edriss S. Titi,et al.  Slow observables of singularly perturbed differential equations , 2007 .

[19]  Ernst Hairer,et al.  On the Energy Distribution in Fermi–Pasta–Ulam Lattices , 2012 .

[20]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[21]  Björn Engquist,et al.  A multiscale method for highly oscillatory ordinary differential equations with resonance , 2008, Math. Comput..

[22]  Giovanni Gallavotti,et al.  The Fermi-Pasta-Ulam Problem , 2008 .

[23]  Gil Ariel,et al.  Multiscale Computations for Highly Oscillatory Problems , 2009, CSE 2009.

[24]  David Cohen,et al.  Numerical Integrators for Highly Oscillatory Hamiltonian Systems: A Review , 2006 .

[25]  Björn Engquist,et al.  Numerical Analysis of Multiscale Computations , 2012 .

[26]  Jesús María Sanz-Serna,et al.  A Multiscale Technique for Finding Slow Manifolds of Stiff Mechanical Systems , 2012, Multiscale Model. Simul..

[27]  Eric Vanden-Eijnden,et al.  NUMERICAL TECHNIQUES FOR MULTI-SCALE DYNAMICAL SYSTEMS WITH STOCHASTIC EFFECTS ⁄ , 2003 .

[28]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[29]  Benedict Leimkuhler,et al.  Molecular dynamics and the accuracy of numerically computed averages , 2007, Acta Numerica.

[30]  Olof Runborg,et al.  Multi-scale methods for wave propagation in heterogeneous media , 2009, 0911.2638.

[31]  Dario Bambusi,et al.  Resonance, Metastability and Blow up in FPU , 2007 .

[32]  Ilias S. Kotsireas,et al.  Advances in applied mathematics, modeling, and computational science , 2013 .

[33]  P. Deuflhard A study of extrapolation methods based on multistep schemes without parasitic solutions , 1979 .

[34]  Björn Engquist,et al.  Multiscale computations for highly oscillatory problems, Multiscale Modeling and Simulation in Science , 2009 .

[35]  Ioannis G. Kevrekidis,et al.  Constraint-defined manifolds: A legacy code approach to low-dimensional computation , 2005 .

[36]  Björn Engquist,et al.  A reversible multiscale integration method , 2009 .

[37]  Eric Vanden-Eijnden,et al.  A computational strategy for multiscale chaotic systems with applications to Lorenz 96 model , 2004 .

[38]  Marissa Condon,et al.  On second-order differential equations with highly oscillatory forcing terms , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  Zvi Artstein,et al.  Young Measure Approach to Computing Slowly Advancing Fast Oscillations , 2008, Multiscale Model. Simul..

[40]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .

[41]  E. Weinan Analysis of the heterogeneous multiscale method for ordinary differential equations , 2003 .

[42]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[43]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[44]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[45]  Eric Vanden-Eijnden,et al.  A computational strategy for multiscale systems with applications to Lorenz 96 model , 2004 .

[46]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[47]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[48]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[49]  J. Craggs Applied Mathematical Sciences , 1973 .

[50]  Olof Runborg,et al.  Multiscale Modeling and Simulation in Science , 2009 .

[51]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[52]  Heinz-Otto Kreiss,et al.  Problems with different time scales , 1992, Acta Numerica.