A Multiscale Method for Highly Oscillatory Dynamical Systems Using a Poincaré Map Type Technique
暂无分享,去创建一个
S. Kim | Y. Lee | Björn Engquist | Gil Ariel | Yen-Hsi Richard Tsai | Yoonsang Lee | B. Engquist | G. Ariel | Y. Tsai | S. Kim
[1] Eric Vanden Eijnden. Numerical techniques for multi-scale dynamical systems with stochastic effects , 2003 .
[2] Björn Engquist,et al. Oscillatory Systems with Three Separated Time Scales: Analysis and Computation , 2012 .
[3] Björn Engquist,et al. A Multiscale Method Coupling Network and Continuum Models in Porous Media I: Steady-State Single Phase Flow , 2012, Multiscale Model. Simul..
[4] A. Iserles,et al. Acta numerica 1992 , edited by A. Iserles. Pp. 407. £19.95 1992. ISBN 0-521-41026-6 (Cambridge University Press) , 1993, The Mathematical Gazette.
[5] J. Cole,et al. Multiple Scale and Singular Perturbation Methods , 1996 .
[6] Dario Bambusi,et al. On Metastability in FPU , 2006 .
[7] Eric Vanden-Eijnden,et al. Accelerated Simulation of a Heavy Particle in a Gas of Elastic Spheres , 2008, Multiscale Model. Simul..
[8] Linda R. Petzold,et al. Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.
[9] Ioannis G. Kevrekidis,et al. Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue Spectrum , 2002, SIAM J. Sci. Comput..
[10] Björn Engquist,et al. Heterogeneous multiscale methods for stiff ordinary differential equations , 2005, Math. Comput..
[11] A. Mielke. Analysis, modeling and simulation of multiscale problems , 2006 .
[12] Jerrold E. Marsden,et al. Nonintrusive and Structure Preserving Multiscale Integration of Stiff ODEs, SDEs, and Hamiltonian Systems with Hidden Slow Dynamics via Flow Averaging , 2009, Multiscale Model. Simul..
[13] H. Weitzner,et al. Perturbation Methods in Applied Mathematics , 1969 .
[14] H. Kreiss. Problems with Different Time Scales for Ordinary Differential Equations , 1979 .
[15] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[16] Björn Engquist,et al. A Multiscale Method Coupling Network and Continuum Models in Porous Media II—Single- and Two-Phase Flows , 2013 .
[17] Björn Engquist,et al. Numerical Multiscale Methods for Coupled Oscillators , 2009, Multiscale Model. Simul..
[18] Edriss S. Titi,et al. Slow observables of singularly perturbed differential equations , 2007 .
[19] Ernst Hairer,et al. On the Energy Distribution in Fermi–Pasta–Ulam Lattices , 2012 .
[20] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[21] Björn Engquist,et al. A multiscale method for highly oscillatory ordinary differential equations with resonance , 2008, Math. Comput..
[22] Giovanni Gallavotti,et al. The Fermi-Pasta-Ulam Problem , 2008 .
[23] Gil Ariel,et al. Multiscale Computations for Highly Oscillatory Problems , 2009, CSE 2009.
[24] David Cohen,et al. Numerical Integrators for Highly Oscillatory Hamiltonian Systems: A Review , 2006 .
[25] Björn Engquist,et al. Numerical Analysis of Multiscale Computations , 2012 .
[26] Jesús María Sanz-Serna,et al. A Multiscale Technique for Finding Slow Manifolds of Stiff Mechanical Systems , 2012, Multiscale Model. Simul..
[27] Eric Vanden-Eijnden,et al. NUMERICAL TECHNIQUES FOR MULTI-SCALE DYNAMICAL SYSTEMS WITH STOCHASTIC EFFECTS ⁄ , 2003 .
[28] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[29] Benedict Leimkuhler,et al. Molecular dynamics and the accuracy of numerically computed averages , 2007, Acta Numerica.
[30] Olof Runborg,et al. Multi-scale methods for wave propagation in heterogeneous media , 2009, 0911.2638.
[31] Dario Bambusi,et al. Resonance, Metastability and Blow up in FPU , 2007 .
[32] Ilias S. Kotsireas,et al. Advances in applied mathematics, modeling, and computational science , 2013 .
[33] P. Deuflhard. A study of extrapolation methods based on multistep schemes without parasitic solutions , 1979 .
[34] Björn Engquist,et al. Multiscale computations for highly oscillatory problems, Multiscale Modeling and Simulation in Science , 2009 .
[35] Ioannis G. Kevrekidis,et al. Constraint-defined manifolds: A legacy code approach to low-dimensional computation , 2005 .
[36] Björn Engquist,et al. A reversible multiscale integration method , 2009 .
[37] Eric Vanden-Eijnden,et al. A computational strategy for multiscale chaotic systems with applications to Lorenz 96 model , 2004 .
[38] Marissa Condon,et al. On second-order differential equations with highly oscillatory forcing terms , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[39] Zvi Artstein,et al. Young Measure Approach to Computing Slowly Advancing Fast Oscillations , 2008, Multiscale Model. Simul..
[40] B. Leimkuhler,et al. Simulating Hamiltonian Dynamics: Hamiltonian PDEs , 2005 .
[41] E. Weinan. Analysis of the heterogeneous multiscale method for ordinary differential equations , 2003 .
[42] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[43] Robert D. Skeel,et al. Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..
[44] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[45] Eric Vanden-Eijnden,et al. A computational strategy for multiscale systems with applications to Lorenz 96 model , 2004 .
[46] E Weinan,et al. Heterogeneous multiscale methods: A review , 2007 .
[47] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[48] A. Iserles,et al. Lie-group methods , 2000, Acta Numerica.
[49] J. Craggs. Applied Mathematical Sciences , 1973 .
[50] Olof Runborg,et al. Multiscale Modeling and Simulation in Science , 2009 .
[51] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[52] Heinz-Otto Kreiss,et al. Problems with different time scales , 1992, Acta Numerica.