Further remarks on stabilizing chains of integrators by using network delays

This paper focuses on the closed-loop stability of a chain of integrators in a networked-control setting. More precisely, we are interested in using the network-induced delays as control parameters. Similar to the continuous-time case, we will see that a single delay is not sufficient to stabilize a chain having n integrators, but that n delay blocks are able to stabilize such a chain without being able to guarantee an arbitrary pole placement for the corresponding closed-loop system. Several illustrative examples complete the presentation.

[1]  M. Marden Geometry of Polynomials , 1970 .

[2]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[3]  S. Niculescu,et al.  Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach , 2007 .

[4]  D. D. Perlmutter,et al.  Stability of time‐delay systems , 1972 .

[5]  G. Bliss Algebraic functions , 1933 .

[6]  Achim Ilchmann,et al.  Output feedback stabilisation of minimum phase systems by delays , 2004, Syst. Control. Lett..

[7]  Wim Michiels,et al.  Stabilizing a chain of integrators using multiple delays , 2004, IEEE Transactions on Automatic Control.

[8]  Y. Tipsuwan,et al.  Control methodologies in networked control systems , 2003 .

[9]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[10]  Sabine Mondié,et al.  Global asymptotic stabilization for chains of integrators with a delay in the input , 2003, IEEE Trans. Autom. Control..

[11]  Wim Michiels,et al.  Static output feedback stabilization: necessary conditions for multiple delay controllers , 2005, IEEE Transactions on Automatic Control.

[12]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1994 .

[13]  James Lam,et al.  A new delay system approach to network-based control , 2008, Autom..

[14]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[15]  H. Langer,et al.  Perturbation of the Eigenvalues of Quadratic Matrix Polynomials , 1992, SIAM J. Matrix Anal. Appl..

[16]  Qixin Zhu,et al.  Stochastic optimal control and analysis of stability of networked control systems with long delay , 2003, Autom..

[17]  Panos J. Antsaklis,et al.  On the model-based control of networked systems , 2003, Autom..

[18]  C. Abdallah,et al.  Delayed Positive Feedback Can Stabilize Oscillatory Systems , 1993, 1993 American Control Conference.

[19]  Wei Zhang,et al.  Stability of networked control systems , 2001 .

[20]  Karl Johan Åström,et al.  Computer-Controlled Systems: Theory and Design , 1984 .

[21]  Q. Han,et al.  State feedback controller design of networked control systems , 2004 .

[22]  P. Lancaster,et al.  On the perturbation of analytic matrix functions , 1999 .

[23]  Johan Nilsson,et al.  Stochastic Analysis and Control of Real-Time Systems with Random Time Delays , 1996 .

[24]  Astrom Computer Controlled Systems , 1990 .

[25]  Umit Ozguner,et al.  Closed-loop control of systems over a communication network with queues , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[26]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[27]  Q. I. Rahman,et al.  Analytic theory of polynomials , 2002 .

[28]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[29]  Yongwimon Lenbury,et al.  A note on asymptotic stability conditions for delay difference equations , 2005, Int. J. Math. Math. Sci..

[30]  A. Saberi,et al.  On multiple-delay static output feedback stabilization of LTI plants , 2008, 2008 American Control Conference.

[31]  Björn Wittenmark,et al.  Stochastic Analysis and Control of Real-time Systems with Random Time Delays , 1999 .

[32]  Tosio Kato Perturbation theory for linear operators , 1966 .

[33]  Hu Shousong,et al.  Brief Stochastic optimal control and analysis of stability of networked control systems with long delay , 2003 .

[34]  Dong Yue,et al.  State feedback controller design of networked control systems , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[35]  Kentaro Hirata,et al.  Difference feedback can stabilize uncertain steady states , 2001, IEEE Trans. Autom. Control..