ASYMPTOTIC BEHAVIOUR OF THE RESOLVENT OF STURM-LIOUVILLE EQUATIONS AND THE ALGEBRA OF THE KORTEWEG-DE VRIES EQUATIONS
暂无分享,去创建一个
[1] I. Gel'fand,et al. Combinatorial computation of characteristic classes , 1975 .
[2] V S Buslaev,et al. ON THE ASYMPTOTIC BEHAVIOR OF THE SPECTRAL CHARACTERISTICS OF EXTERIOR PROBLEMS FOR THE SCHRÖDINGER OPERATOR , 1975 .
[3] I. Gel'fand,et al. Combinatorial calculation of characteristic classes , 1975 .
[4] B. Dubrovin. Inverse problem for periodic finite — zoned potentials in the theory of scattering , 1975 .
[5] V. Lazutkin,et al. Normal forms and versal deformations for Hill's equation , 1975 .
[6] B. Dubrovin. Periodic problems for the Korteweg — de Vries equation in the class of finite band potentials , 1975 .
[7] V. Marčenko. THE PERIODIC KORTEWEG-de VRIES PROBLEM , 1974 .
[8] Sergei Petrovich Novikov,et al. The periodic problem for the Korteweg—de vries equation , 1974 .
[9] V. Zakharov,et al. Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .
[10] I. M. Gel. THE COHOMOLOGY OF INFINITE DIMENSIONAL LIE ALGEBRAS; SOME QUESTIONS OF INTEGRAL GEOMETRY , 1970 .
[11] P. Lax. INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .
[12] C. S. Gardner,et al. Method for solving the Korteweg-deVries equation , 1967 .
[13] R. Seeley. The index of elliptic systems of singular integral operators , 1963 .
[14] S. Minakshisundaram. A Generalization of Epstein Zeta Functions , 1949, Canadian Journal of Mathematics.