Emergent optimization: design and applications in telecommunications and bioinformatics

In this PhD Thesis, we are interested in designing new Particle Swarm Optimization (PSO) proposals that solve or mitigate the main disadvantages present in this algorithm. To this point, we have used a series of methodologies to analyze the internal behavior of this algorithm and to identify the main problems or improvement opportunities appearing in existing PSO versions. In order to assess the effectiveness of the new proposals, we have performed comparative studies from two main points of view: solution quality and scalability in terms of the problem size (decision variables). For this task we have followed specific experimental procedures of standard benchmark test suites (CEC05, SOCO10, DTLZ, etc.), and we have compared against the most prominent metaheuristics in current state of the art (G-CMA-ES, MSGA-II, OMOPSO, DE, MOS-DE, and MTS). In this context we have proposed a series of new algorithmic approaches: DEPSO, RPSO-vm, PSO6, SMPSO, PSO6-Mtsls, that have been validated and located at the top level outperforming algorithms in the state of the art. Second, we are aimed at solving real world complex problems with PSO based algorithms to determine the adaptability of this algorithm to different representations and scenario conditions, within limited computational time, and requiring huge data base management. In concrete, we have focused in this thesis on three NP-Hard real applications trying to cover quite different industry fields: Gene Selection in DNA Microarrays (Bioinformatics), Communication Protocol Tuning in VANETs (Telecommunications), and Signal Lights Timing in traffic management (Urban Mobility).

[1]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[2]  Werner A. Stahel,et al.  Comparison of a road traffic emission model (HBEFA) with emissions derived from measurements in the Gubrist road tunnel, Switzerland , 2005 .

[3]  Rand R. Wilcox,et al.  New Statistical Procedures for the Social Sciences. , 1989 .

[4]  Jun Zhang,et al.  A Novel Set-Based Particle Swarm Optimization Method for Discrete Optimization Problems , 2010, IEEE Transactions on Evolutionary Computation.

[5]  Patrick Weber,et al.  OpenStreetMap: User-Generated Street Maps , 2008, IEEE Pervasive Computing.

[6]  José García-Nieto,et al.  Why six informants is optimal in PSO , 2012, GECCO '12.

[7]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[8]  Brijesh Verma,et al.  Hybrid ensemble approach for classification , 2011, Applied Intelligence.

[9]  Stefan Krauss,et al.  MICROSCOPIC MODELING OF TRAFFIC FLOW: INVESTIGATION OF COLLISION FREE VEHICLE DYNAMICS. , 1998 .

[10]  YouSik Hong,et al.  The optimization of traffic signal light using artificial intelligence , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[11]  Zenon Chaczko,et al.  Ant-Based Topology Convergence Algorithms for Resource Management in VANETs , 2007, EUROCAST.

[12]  K Wood URBAN TRAFFIC CONTROL : SYSTEMS REVIEW , 1993 .

[13]  Kalyanmoy Deb,et al.  A population-based, steady-state procedure for real-parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[14]  S. P. Fodor,et al.  Light-generated oligonucleotide arrays for rapid DNA sequence analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Francisco Luna,et al.  jMetal: a Java Framework for Developing Multi-Objective Optimization Metaheuristics , 2006 .

[16]  Enrique Alba,et al.  Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[17]  Günther R. Raidl,et al.  A Unified View on Hybrid Metaheuristics , 2006, Hybrid Metaheuristics.

[18]  Jacques Carlier,et al.  Handbook of Scheduling - Algorithms, Models, and Performance Analysis , 2004 .

[19]  Thomas Stützle,et al.  Incremental Social Learning in Particle Swarms , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  Jun Zhang,et al.  Orthogonal Learning Particle Swarm Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[21]  Jing J. Liang,et al.  Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization , 2005 .

[22]  P. N. Suganthan,et al.  Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems , 2011 .

[23]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[24]  Ed Keedwell,et al.  Two-Phase EA/k-NN for Feature Selection and Classification in Cancer Microarray Datasets , 2005, 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[25]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[26]  Sébastien Vérel,et al.  Fitness Clouds and Problem Hardness in Genetic Programming , 2004, GECCO.

[27]  Dimitri Lefebvre,et al.  Continuous and timed Petri nets for the macroscopic and microscopic traffic flow modelling , 2005, Simul. Model. Pract. Theory.

[28]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[29]  S. Ramaswamy,et al.  Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. , 2002, Cancer research.

[30]  Víctor Robles,et al.  A new initialization procedure for the distributed estimation of distribution algorithms , 2010, Soft Comput..

[31]  J. Kennedy,et al.  Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[32]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[33]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[34]  Enrique Alba,et al.  Empirical computation of the quasi-optimal number of informants in particle swarm optimization , 2011, GECCO '11.

[35]  Li Peng,et al.  Isolation niches particle swarm optimization applied to traffic lights controlling , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[36]  Enrique Alba,et al.  Analyzing synchronous and asynchronous parallel distributed genetic algorithms , 2001, Future Gener. Comput. Syst..

[37]  Russell C. Eberhart,et al.  Adaptive particle swarm optimization: detection and response to dynamic systems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[38]  Salissou Moutari,et al.  A hybrid macroscopic-based model for traffic flow in road networks , 2010, Eur. J. Oper. Res..

[39]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[40]  Jie Chen,et al.  Hybridizing Differential Evolution and Particle Swarm Optimization to Design Powerful Optimizers: A Review and Taxonomy , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[41]  Yun-Wei Shang,et al.  A Note on the Extended Rosenbrock Function , 2006, Evolutionary Computation.

[42]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[43]  Enrique Alba,et al.  Evaluation of Different Optimization Techniques in the Design of Ad Hoc Injection Networks , 2008 .

[44]  Ellips Masehian,et al.  Particle Swarm Optimization Methods, Taxonomy and Applications , 2009 .

[45]  Ji Zhu,et al.  Improved centroids estimation for the nearest shrunken centroid classifier , 2007, Bioinform..

[46]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[47]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[48]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[49]  Sung-Bae Cho,et al.  Cancer classification using ensemble of neural networks with multiple significant gene subsets , 2007, Applied Intelligence.

[50]  Antonio LaTorre,et al.  A Memetic Differential Evolution Algorithm for Continuous Optimization , 2009, 2009 Ninth International Conference on Intelligent Systems Design and Applications.

[51]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[52]  Ella Bingham Reinforcement learning in neurofuzzy traffic signal control , 2001, Eur. J. Oper. Res..

[53]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[54]  Enrique Alba,et al.  Intelligent OLSR Routing Protocol Optimization for VANETs , 2012, IEEE Transactions on Vehicular Technology.

[55]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[56]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[57]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[58]  Chenn-Jung Huang,et al.  Using particle swam optimization for QoS in ad-hoc multicast , 2009, Eng. Appl. Artif. Intell..

[59]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[60]  Jin-Kao Hao,et al.  A Hybrid GA/SVM Approach for Gene Selection and Classification of Microarray Data , 2006, EvoWorkshops.

[61]  Carlos A. Coello Coello,et al.  Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer , 2004, GECCO.

[62]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems , 2006, Int. J. Intell. Syst..

[63]  I. Iervolino,et al.  Computer Aided Civil and Infrastructure Engineering , 2009 .

[64]  Takashi Nagatani,et al.  Effect of speed fluctuations on a green-light path in a 2d traffic network controlled by signals , 2010 .

[65]  Juan Chen,et al.  Road-Junction Traffic Signal Timing Optimization by an adaptive Particle Swarm Algorithm , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[66]  Daniel Krajzewicz,et al.  The Open Source Traffic Simulation Package SUMO , 2006 .

[67]  Ulf Grenander,et al.  A stochastic nonlinear model for coordinated bird flocks , 1990 .

[68]  David A. Hensher,et al.  Handbook of Transport Systems and Traffic Control , 2001 .

[69]  Enrique Alba,et al.  The exploration/exploitation tradeoff in dynamic cellular genetic algorithms , 2005, IEEE Transactions on Evolutionary Computation.

[70]  Jonathan E. Fieldsend,et al.  A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts , 2005, EMO.

[71]  Dipti Srinivasan,et al.  Distributed Geometric Fuzzy Multiagent Urban Traffic Signal Control , 2010, IEEE Transactions on Intelligent Transportation Systems.

[72]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[73]  Amit Konar,et al.  Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives , 2008, Advances of Computational Intelligence in Industrial Systems.

[74]  Raymond Ros,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .

[75]  Changhe Li,et al.  A Self-Learning Particle Swarm Optimizer for Global Optimization Problems , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[76]  Christian L. Müller,et al.  Global Characterization of the CEC 2005 Fitness Landscapes Using Fitness-Distance Analysis , 2011, EvoApplications.

[77]  Neila Bhouri,et al.  A multimodal traffic responsive strategy using particle swarm optimization , 2009, CTS 2009.

[78]  Licheng Jiao,et al.  Multi-population Genetic Algorithm for Feature Selection , 2006, ICNC.

[79]  Enrique Alba,et al.  Restart particle swarm optimization with velocity modulation: a scalability test , 2011, Soft Comput..

[80]  José García-Nieto,et al.  Noiseless functions black-box optimization: evaluation of a hybrid particle swarm with differential operators , 2009, GECCO '09.

[81]  N. Franken,et al.  Combining particle swarm optimisation with angle modulation to solve binary problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[82]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[83]  A Schadschneider,et al.  Optimizing traffic lights in a cellular automaton model for city traffic. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  Xiaodong Li,et al.  Cooperatively Coevolving Particle Swarms for Large Scale Optimization , 2012, IEEE Transactions on Evolutionary Computation.

[85]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[86]  Dipti Srinivasan,et al.  Neural Networks for Real-Time Traffic Signal Control , 2006, IEEE Transactions on Intelligent Transportation Systems.

[87]  Luca Maria Gambardella,et al.  AntHocNet: an adaptive nature-inspired algorithm for routing in mobile ad hoc networks , 2005, Eur. Trans. Telecommun..

[88]  José García-Nieto,et al.  Automatic Parameter Tuning with Metaheuristics of the AODV Routing Protocol for Vehicular Ad-Hoc Networks , 2010, EvoApplications.

[89]  Thomas Stützle,et al.  An incremental ant colony algorithm with local search for continuous optimization , 2011, GECCO '11.

[90]  Janaka Yasantha Ruwanpura,et al.  Optimization of traffic signal light timing using simulation , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[91]  D. C. Chin,et al.  Traffic-responsive signal timing for system-wide traffic control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[92]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[93]  Nedal T. Ratrout,et al.  Review of the Fuzzy Logic Based Approach in Traffic Signal Control: Prospects in Saudi Arabia , 2009 .

[94]  Christian L. Müller,et al.  Particle Swarm CMA Evolution Strategy for the optimization of multi-funnel landscapes , 2009, 2009 IEEE Congress on Evolutionary Computation.

[95]  R. Eberhart,et al.  Comparing inertia weights and constriction factors in particle swarm optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[96]  Dongbin Zhao,et al.  Computational Intelligence in Urban Traffic Signal Control: A Survey , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[97]  José García-Nieto,et al.  Automatic tuning of communication protocols for vehicular ad hoc networks using metaheuristics , 2010, Eng. Appl. Artif. Intell..

[98]  Ponnuthurai Nagaratnam Suganthan,et al.  Benchmark Functions for the CEC'2013 Special Session and Competition on Large-Scale Global Optimization , 2008 .

[99]  Bijaya K. Panigrahi,et al.  On Some Properties of the lbest Topology in Particle Swarm Optimization , 2009, 2009 Ninth International Conference on Hybrid Intelligent Systems.

[100]  Yuval Davidor,et al.  Epistasis Variance: Suitability of a Representation to Genetic Algorithms , 1990, Complex Syst..

[101]  Enrique Alba,et al.  Parallel evolutionary algorithms can achieve super-linear performance , 2002, Inf. Process. Lett..

[102]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[103]  Chun Chen,et al.  Multiple trajectory search for Large Scale Global Optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[104]  Douglas Thain,et al.  Distributed computing in practice: the Condor experience , 2005, Concurr. Pract. Exp..

[105]  Nagui M Rouphail,et al.  Direct Signal Timing Optimization: Strategy Development and Results , 2000 .

[106]  José García-Nieto,et al.  Swarm intelligence for traffic light scheduling: Application to real urban areas , 2012, Eng. Appl. Artif. Intell..

[107]  DramińskiMichał,et al.  Monte Carlo feature selection for supervised classification , 2008 .

[108]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Javier J. Sánchez Medina,et al.  Stochastic Vs Deterministic Traffic Simulator. Comparative Study for Its Use Within a Traffic Light Cycles Optimization Architecture , 2005, IWINAC.

[110]  G. Polo Resolución de problemas combinatorios con aplicación real en sistemas distribuidos , 2006 .

[111]  José García-Nieto,et al.  Parallel multi-swarm optimizer for gene selection in DNA microarrays , 2011, Applied Intelligence.

[112]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[113]  Brian J. d'Auriol,et al.  A novel feature selection method based on normalized mutual information , 2011, Applied Intelligence.

[114]  Xin Yao,et al.  Fitness-Probability Cloud and a Measure of Problem Hardness for Evolutionary Algorithms , 2011, EvoCOP.

[115]  Enrique Alba,et al.  Parallel Metaheuristics: A New Class of Algorithms , 2005 .

[116]  Thomas Stützle,et al.  Combinations of Local Search and Exact Algorithms , 2003, EvoWorkshops.

[117]  Peter Holm,et al.  Traffic Analysis Toolbox Volume IV: Guidelines for Applying CORSIM Microsimulation Modeling Software , 2007 .

[118]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[119]  Shengxiang Yang,et al.  Evolutionary Computation in Dynamic and Uncertain Environments , 2007, Studies in Computational Intelligence.

[120]  Anne Auger,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .

[121]  Dirk Helbing,et al.  Self-control of traffic lights and vehicle flows in urban road networks , 2008, 0802.0403.

[122]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[123]  Richard C. Chapman,et al.  Application of Particle Swarm to Multiobjective Optimization , 1999 .

[124]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[125]  James Kennedy,et al.  Bare bones particle swarms , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[126]  Béchir el Ayeb,et al.  Mining microarray gene expression data with unsupervised possibilistic clustering and proximity graphs , 2010, Applied Intelligence.

[127]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[128]  Andrew M. Sutton,et al.  PSO and multi-funnel landscapes: how cooperation might limit exploration , 2006, GECCO.

[129]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[130]  Peter Merz,et al.  Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms , 2004, Evolutionary Computation.

[131]  Hitoshi Iba,et al.  Selecting informative genes using a multiobjective evolutionary algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[132]  Tianzi Jiang,et al.  A combinational feature selection and ensemble neural network method for classification of gene expression data , 2004, BMC Bioinformatics.

[133]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[134]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.