Estimating the fatigue damage of steel catenary risers in the touchdown zone

[1]  Hugh Howells,et al.  Observations And Modeling of Steel Catenary Riser Trenches , 2007 .

[2]  George Li,et al.  Simulation of SCR Behaviour at Touchdown Zone - Part II: Testing of a Sectional SCR Model in a Geotechnical Centrifuge , 2011 .

[3]  A. Palmer Dimensional Analysis And Intelligent Experimentation , 2008 .

[4]  Mike Campbell,et al.  IMPROVED SCR DESIGN FOR DYNAMIC VESSEL APPLICATIONS , 2010 .

[5]  Mark Randolph,et al.  Analytical estimation of static stress range in oscillating steel catenary risers at touchdown areas and its application with dynamic amplification factors , 2014 .

[6]  Shan Huang,et al.  Trenching effects on structural safety assessment of integrated riser/semisubmersible in cohesive soil , 2014 .

[7]  Alfonso Izquierdo,et al.  Development and Qualification of Alternative Solutions for Improved Fatigue Performance of Deepwater Steel Catenary Risers , 2007 .

[8]  W. T. Yeung,et al.  Damage detection in bridges using neural networks for pattern recognition of vibration signatures , 2005 .

[9]  F. W. Grealish,et al.  Steel Catenary Riser for the Marlim Field FPS P-XVIII , 1996 .

[10]  Bernt J. Leira,et al.  Analysis Guidelines and Application of a Riser-Soil Interaction Model Including Trench Effects , 2004 .

[11]  Clóvis de Arruda Martins,et al.  Analytical Approximation For the Dynamic Bending Moment At the Touchdown Point of a Catenary Riser , 1997 .

[12]  Mark Randolph,et al.  Dynamic amplification factors for response analysis of steel catenary risers at touch down areas , 2011 .

[13]  William Y. Fowlkes,et al.  Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development , 1995 .

[14]  E. Clukey,et al.  Steel Catenary Riser Touchdown Point Vertical Interaction Models , 2004 .

[15]  Lizhong Wang,et al.  Interaction between catenary riser and soft seabed: Large-scale indoor tests , 2014 .

[16]  Angel C. Aparicio,et al.  Dynamic Amplification Factors in Cable-stayed Structures , 2007 .

[17]  C. Bridge,et al.  Effects of seabed interaction on steel catenary risers , 2005 .

[18]  Mark Randolph,et al.  Dimensionless groups governing response of steel catenary risers , 2013 .

[19]  Yong Bai Pipelines and risers , 2001 .

[20]  Daniel Karunakaran,et al.  A parametric design study for a semi/SCR system in Northern North Sea , 2008 .

[21]  Alan G. Young,et al.  Soil Response and Stiffness Laboratory Measurements of SCR Pipe/Soil Interaction , 2008 .

[22]  Beatriz Souza Leite Pires de Lima,et al.  A hybrid fuzzy/genetic algorithm for the design of offshore oil production risers , 2005 .

[24]  Charles Aubeny,et al.  Seafloor Interaction With Steel Catenary Risers , 2008 .

[25]  David White,et al.  Analysis of Soil Strength Degradation during Episodes of Cyclic Loading, Illustrated by the T-Bar Penetration Test , 2010 .

[26]  N. Willis,et al.  Interaction between Deepwater Catenary Risers and a Soft Seabed: Large Scale Sea Trials , 2001 .

[27]  Holger R. Maier,et al.  State of the Art of Artificial Neural Networks in Geotechnical Engineering , 2008 .

[28]  David White,et al.  Centrifuge Modelling of Riser-Soil Stiffness Degradation in the Touchdown Zone of a Steel Catenary Riser , 2008 .

[29]  Yong Bai,et al.  Fatigue Generation Mechanism in Touchdown Area of Steel Catenary Risers in Non-Linear Hysteretic Seabed , 2012 .

[30]  Metin Karayaka,et al.  Deepwater Spar Steel Catenary Riser Monitoring Strategy , 2007 .

[31]  Ioannis K. Chatjigeorgiou,et al.  Dynamic interaction of catenary risers with the seafloor , 2012 .

[32]  Clóvis de Arruda Martins,et al.  The Soil Rigidity Effect In the Touchdown Boundary-Layer of a Catenary Riser: Static Problem , 1998 .

[33]  Hojjat Adeli,et al.  Neural Networks in Civil Engineering: 1989–2000 , 2001 .

[34]  Edward S. Taylor,et al.  Dimensional analysis for engineers , 1974 .

[35]  Ibrahim H. Guzelbey,et al.  Explicit formulation of SIF using neural networks for opening mode of fracture , 2007 .

[36]  Matthew Hodder,et al.  3D experiments investigating the interaction of a model SCR with the seabed , 2010 .

[37]  John S. Gero,et al.  Effect of Representation on the Performance of Neural Networks in Structural Engineering Applications , 1994 .

[38]  Feng Yuan,et al.  Analytical analysis of pipeline–soil interaction during J-lay on a plastic seabed with bearing resistance proportional to depth , 2012 .

[39]  Robert G. Bea,et al.  Wave Forces on Decks of Offshore Platforms , 1999 .

[40]  H. Pettingill,et al.  World-Wide Deepwater Exploration and Production: Past, Present and Future , 2002 .

[41]  Yaguang Jiao Non-linear load-deflection models for seafloor interaction with steel catenary risers , 2009 .

[42]  A. M. C. D. Melo,et al.  Preliminary Design of Composite Catenary Risers Using Optimization Techniques , 2010 .

[43]  Norman Toy,et al.  Full-scale Model Tests Of A Steel Catenary Riser , 2003 .

[44]  Carl G. Langner Fatigue Life Improvement of Steel Catenary Risers due to Self-Trenching at the Touchdown Point , 2003 .

[45]  Shan Huang,et al.  Dynamic response of steel catenary riser using a seabed interaction under random loads , 2013 .

[46]  Ruxin Song,et al.  Advances in Deepwater Steel Catenary Riser Technology State-of-the-Art: Part I — Design , 2007 .

[47]  N. J. De Vos Rainfall-Runoff modelling using artificial neural networks , 2003 .

[48]  Holger R. Maier,et al.  Artificial Neural Network based Settlement Prediction Formula for Shallow Foundations on Granular Soils , 2002 .

[49]  D. Hammerstrom,et al.  Working with neural networks , 1993, IEEE Spectrum.

[50]  Charles Aubeny,et al.  Advances in Pipe-soil Interaction Methodology and Application for SCR Fatigue Design , 2011 .

[51]  Ioannis K. Chatjigeorgiou,et al.  Three dimensional nonlinear dynamics of submerged, extensible catenary pipes conveying fluid and subjected to end-imposed excitations , 2010 .

[52]  Charles Aubeny,et al.  Interaction Model for Steel Compliant Riser on Soft Seabed , 2008 .

[53]  Mark Randolph,et al.  A Parametric Study on Effects of Environmental Loadings on Fatigue Life of Steel Catenary Risers (Using a Nonlinear Cyclic Riser-Soil Interaction Model) , 2010 .

[54]  Hezhen Yang,et al.  Multiobjective Optimization for Dynamic Umbilical Installation Using Non-Dominated Sorting Genetic Algorithm , 2011 .

[55]  Jack Wu,et al.  Pragmatic Solutions to Touch-Down Zone Fatigue Challenges in Steel Catenary Risers , 2004 .

[56]  George Li,et al.  Centrifuge modeling of steel catenary risers at touchdown zone part II: Assessment of centrifuge test results using kaolin clay , 2013 .

[57]  Ricky Theti,et al.  Soil interaction effects on simple-catenary riser response , 2001 .

[58]  Mark Randolph,et al.  Pipeline Embedment in deep water: processes and quantitative assessment , 2008 .

[59]  Mark Dixon,et al.  Steel Catenary Riser (SCR) Design Issues At Touch Down Area , 2007 .

[60]  Adrian Connaire,et al.  SCR designs rise to the challenge , 2007 .

[61]  Shan Huang,et al.  Seabed Interaction Modelling Effects on the Global Response of Catenary Pipeline: A Case Study , 2013 .

[62]  Yong Bai,et al.  Seabed Trench Formation And Its Impact On Fatigue Life Of Steel Catenary Risers In Touchdown Area , 2012 .

[63]  L Haustermans,et al.  Model tests to simulate riser-soil interaction in touchdown point region , 2005 .

[64]  Chun Fai Leung,et al.  Centrifuge modelling of SCR vertical motion at touchdown zone , 2011 .

[65]  N.R.T. Willis,et al.  Stride JIP: Steel Risers in Deepwater Environments - Progress Summary , 1999 .

[66]  Mike Campbell THE COMPLEXITIES OF FATIGUE ANALYSIS FOR DEEPWATER RISERS , 1999 .

[67]  Abhijit Mukherjee,et al.  MODELING INITIAL DESIGN PROCESS USING ARTIFICIAL NEURAL NETWORKS , 1995 .

[68]  Julia Kluge Units Dimensional Analysis And Physical Similarity , 2016 .

[69]  Hodjat Shiri Influence of seabed trench formation on fatigue performance of steel catenary risers in touchdown zone , 2014 .

[70]  Mark Randolph,et al.  Artificial neural network development for stress analysis of steel catenary risers: Sensitivity study and approximation of static stress range , 2014 .

[71]  Eduardo Nobre Lages,et al.  Compliant vertical access riser assessment: DOE analysis and dynamic response optimization , 2013 .

[72]  Alexandre G. Evsukoff,et al.  Application of Genetic Algorithms to the Synthesis of Riser Configurations , 2003 .

[73]  Ahmed K. Noor,et al.  A hybrid neurocomputing/numerical strategy for nonlinear structural analysis , 1996 .

[74]  Andrew Palmer,et al.  Touchdown indentation of the seabed , 2008 .

[75]  H.-J. Li,et al.  Optimization Design for Deepwater Risers with Fatigue Constraints , 2010 .

[76]  Ruxin Song,et al.  Advances in Deepwater Steel Catenary Riser Technology State-of-the-Art: Part II—Analysis , 2009 .

[77]  Eduardo Nobre Lages,et al.  Optimal Design Approach of Compliant Vertical Access Risers , 2012 .

[78]  Ahmed K. Noor,et al.  A hybrid numerical/neurocomputing strategy for sensitivity analysis of nonlinear structures , 1997 .

[79]  Holger R. Maier,et al.  DATA DIVISION FOR DEVELOPING NEURAL NETWORKS APPLIED TO GEOTECHNICAL ENGINEERING , 2004 .

[80]  Mark Randolph,et al.  Sensitivity studies of SCR fatigue damage in the touchdown zone using an efficient simplified framework for stress range evaluation , 2015 .

[81]  Mark Randolph,et al.  Approximation of the maximum dynamic stress range in steel catenary risers using artificial neural networks , 2015 .

[82]  Jin Ping Zhan Review and verification of marine riser analysis programs , 2010 .

[83]  C. Anderson‐Cook Response Surfaces, Mixtures, and Ridge Analyses , 2008 .

[84]  George Li,et al.  Centrifuge modeling of steel catenary risers at touchdown zone part I: Development of novel centrifuge experimental apparatus , 2013 .

[85]  Songcheng Li,et al.  Dynamic Response of Deepwater Lazy- Wave Catenary Riser , 2010 .

[86]  Ricardo Franciss,et al.  Analyses of a Large Diameter Steel Lazy Wave Riser for Ultra Deepwater in Campos Basin , 2004 .

[87]  James L. Rogers,et al.  SIMULATING STRUCTURAL ANALYSIS WITH NEURAL NETWORK , 1994 .

[88]  Clóvis de Arruda Martins,et al.  A Numerical Method to Solve the Static Problem of a Catenary Riser , 2004 .

[89]  Hezhen Yang,et al.  Multi-objective optimization for deepwater dynamic umbilical installation analysis , 2012 .

[90]  James R. Simpson,et al.  Robust Design and Analysis for Quality Engineering , 1998 .

[91]  David White,et al.  An effective stress framework for the variation in penetration resistance due to episodes of remoulding and reconsolidation , 2013 .

[92]  Massimo Callegari,et al.  Simple analytical models for the J-lay problem , 2005 .

[93]  Clóvis de Arruda Martins,et al.  Riser-Soil Interaction: Local Dynamics at TDP and a Discussion on the Eigenvalue and the VIV Problems , 2006 .

[94]  N. Barltrop,et al.  Dynamics of Fixed Marine Structures , 1991 .

[95]  Basim B. Mekha,et al.  New Frontiers in the Design of Steel Catenary Risers for Floating Production Systems , 2001 .

[96]  Majid Hesar,et al.  Riser Soil Interaction in Soft Clay Near the Touchdown Zone , 2007 .

[97]  Egil Giertsen,et al.  CARISIMA: A Catenary Riser/Soil Interaction Model for Global Riser Analysis , 2004 .

[98]  Robert L. Mason,et al.  Taguchi Methods: A Hands-On Approach , 1994 .

[100]  Beatriz S. L. P. de Lima,et al.  Optimization of Steel Catenary Risers for Offshore Oil Production Using Artificial Immune System , 2008, ICARIS.

[101]  Rafael Loureiro Tanaka,et al.  Parallel Dynamic Optimization of Steel Risers , 2011 .

[102]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[103]  Jiangpeng Shu,et al.  The application of a damage detection method using Artificial Neural Network and train-induced vibrations on a simplified railway bridge model , 2013 .

[104]  Hodjat Shiri Ghaleh Jugh Influence of seabed response on fatigue performance of steel catenary risers in touchdown zone , 2010 .

[105]  Mark Randolph,et al.  Non-Linear Hysteretic Seabed Model for Catenary Pipeline Contact , 2009 .

[106]  Clóvis de Arruda Martins,et al.  Parametric Analysis of a Lazy-Wave Steel Riser , 2005 .

[107]  Beatriz Souza Leite Pires de Lima,et al.  ANN-based surrogate models for the analysis of mooring lines and risers , 2013 .

[108]  Carl M. Larsen,et al.  Optimization of Catenary Risers , 1999 .

[109]  Ioannis K. Chatjigeorgiou,et al.  Second-order nonlinear dynamics of catenary pipelines: A frequency domain approach , 2013 .

[110]  Yong Bai,et al.  Subsea Pipelines and Risers , 2005 .

[111]  Doreen Meier,et al.  Fundamentals Of Neural Networks Architectures Algorithms And Applications , 2016 .

[112]  Hossein Hashemi,et al.  Simplified Approximation of Peak Fatigue Damage In the Touchdown Area of Steel Catenary Risers Based On Seabed Soil Rigidity , 2012 .

[113]  Jun Zhang,et al.  Trenching effects on dynamic behavior of a steel catenary riser , 2010 .

[114]  Charles Aubeny,et al.  Seafloor-Riser Interaction Model , 2009 .

[115]  Clóvis de Arruda Martins,et al.  Dynamic Curvature In Catenary Risers At the Touch Down Point: An Experimental Study And the Analytical Boundary-Layer Solution , 1997 .

[116]  Minoo H. Patel,et al.  Review of flexible riser modelling and analysis techniques , 1995 .

[117]  Felipe Rateiro Pereira,et al.  Risers Model Tests: Scaling Methodology and Dynamic Similarity , 2012 .