Hierarchical Nacre Mimetics with Synergistic Mechanical Properties by Control of Molecular Interactions in Self-Healing Polymers.

Designing the reversible interactions of biopolymers remains a grand challenge for an integral mimicry of mechanically superior biological composites. Yet, they are the key to synergistic combinations of stiffness and toughness by providing sacrificial bonds with hidden length scales. To address this challenge, dynamic polymers were designed with low glass-transition temperature T(g) and bonded by quadruple hydrogen-bonding motifs, and subsequently assembled with high-aspect-ratio synthetic nanoclays to generate nacre-mimetic films. The high dynamics and self-healing of the polymers render transparent films with a near-perfectly aligned structure. Varying the polymer composition allows molecular control over the mechanical properties up to very stiff and very strong films (E≈45 GPa, σ(UTS)≈270 MPa). Stable crack propagation and multiple toughening mechanisms occur in situations of balanced dynamics, enabling synergistic combinations of stiffness and toughness. Excellent gas barrier properties complement the multifunctional property profile.

[1]  Lei Jiang,et al.  Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. , 2014, ACS nano.

[2]  A. Walther,et al.  Facile access to large-scale, self-assembled, nacre-inspired, high-performance materials with tunable nanoscale periodicities. , 2013, ACS applied materials & interfaces.

[3]  E. W. Meijer,et al.  From Molecular Structure to Macromolecular Organization: Keys to Design Supramolecular Biomaterials , 2013 .

[4]  Shuhong Yu,et al.  Biologically inspired, strong, transparent, and functional layered organic-inorganic hybrid films. , 2010, Angewandte Chemie.

[5]  P. Fratzl,et al.  Sacrificial Ionic Bonds Need To Be Randomly Distributed To Provide Shear Deformability , 2009, Nano letters.

[6]  Zhiyong Tang,et al.  Can nature's design be improved upon? High strength, transparent nacre-like nanocomposites with double network of sacrificial cross links. , 2008, The journal of physical chemistry. B.

[7]  Himadri S. Gupta,et al.  Deformation and Fracture Mechanisms of Bone and Nacre , 2011 .

[8]  Xiao-Han Wang,et al.  Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. , 2011, Chemical Society reviews.

[9]  Costantino Creton,et al.  Toughening Elastomers with Sacrificial Bonds and Watching Them Break , 2014, Science.

[10]  A. Walther,et al.  Supramolekulare Kontrolle der mechanischen Eigenschaften feuerabschirmender biomimetischer Perlmuttanaloga , 2010 .

[11]  Andreas Walther,et al.  Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios , 2015, Nature Communications.

[12]  E. W. Meijer,et al.  Cooperative End-to-End and Lateral Hydrogen-Bonding Motifs in Supramolecular Thermoplastic Elastomers , 2006 .

[13]  F. Mizukami,et al.  Flexible Transparent Clay Films with Heat‐Resistant and High Gas‐Barrier Properties , 2007 .

[14]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[15]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[16]  T. Lunkenbein,et al.  UV‐Cured, Flexible, and Transparent Nanocomposite Coating with Remarkable Oxygen Barrier , 2012, Advanced materials.

[17]  Yusuke Yamauchi,et al.  Liquid crystal phases in the aqueous colloids of size-controlled fluorinated layered clay mineral nanosheets. , 2010, Chemical communications.

[18]  O. Ikkala,et al.  Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. , 2011, Biomacromolecules.

[19]  A. Waas,et al.  Ultrastrong and Stiff Layered Polymer Nanocomposites , 2007, Science.

[20]  G. G. Peters,et al.  Effects of Branching and Crystallization on Rheology of Polycaprolactone Supramolecular Polymers with Ureidopyrimidinone End Groups , 2011 .

[21]  Á. Alegría,et al.  Hydration and Dynamic State of Nanoconfined Polymer Layers Govern Toughness in Nacre‐mimetic Nanocomposites , 2013, Advanced materials.

[22]  T. Cosgrove,et al.  A small-angle neutron scattering study of adsorbed poly(ethylene oxide) on Laponite. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[23]  Takashi Kato,et al.  An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation , 2009, Science.

[24]  H. Tenhu,et al.  Molecular engineering of fracture energy dissipating sacrificial bonds into cellulose nanocrystal nanocomposites. , 2014, Angewandte Chemie.

[25]  Ben Wang,et al.  A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide. , 2014, ACS nano.

[26]  A. Walther,et al.  Ionic supramolecular bonds preserve mechanical properties and enable synergetic performance at high humidity in water-borne, self-assembled nacre-mimetics. , 2013, Nanoscale.

[27]  Qi Zhou,et al.  Bioinspired and highly oriented clay nanocomposites with a xyloglucan biopolymer matrix: extending the range of mechanical and barrier properties. , 2013, Biomacromolecules.

[28]  H. Schaefer,et al.  Covalent hypercoordination: can carbon bind five methyl ligands? , 2014, Angewandte Chemie.

[29]  A. Waas,et al.  The Role of Nanoparticle Layer Separation in the Finite Deformation Response of Layered Polyurethane-Clay Nanocomposites , 2009 .

[30]  E. W. Meijer,et al.  Aggregation of ureido-pyrimidinone supramolecular thermoplastic elastomers into nanofibers : a kinetic analysis , 2011 .

[31]  J. M. Elliott,et al.  Molecular recognition between functionalized gold nanoparticles and healable, supramolecular polymer blends – a route to property enhancement , 2013 .

[32]  Albena Lederer,et al.  Adaptable Hetero Diels–Alder Networks for Fast Self‐Healing under Mild Conditions , 2014, Advanced materials.

[33]  Volker Abetz,et al.  Smart silica-rubber nanocomposites in virtue of hydrogen bonding interaction , 2005 .

[34]  O. Ikkala,et al.  Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. , 2010, Nano letters.

[35]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[36]  O. Ikkala,et al.  Deoxyguanosine phosphate mediated sacrificial bonds promote synergistic mechanical properties in nacre-mimetic nanocomposites. , 2013, Biomacromolecules.

[37]  Luqi Liu,et al.  High mechanical performance of layered graphene oxide/poly(vinyl alcohol) nanocomposite films. , 2013, Small.

[38]  J. Grunlan,et al.  Transparent Clay−Polymer Nano Brick Wall Assemblies with Tailorable Oxygen Barrier , 2010 .

[39]  Andreas Walther,et al.  Supramolecular control of stiffness and strength in lightweight high-performance nacre-mimetic paper with fire-shielding properties. , 2010, Angewandte Chemie.

[40]  Christopher Barner-Kowollik,et al.  Current trends in the field of self-healing materials , 2012 .

[41]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[42]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[43]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[44]  T. Lunkenbein,et al.  Barrier Properties of Synthetic Clay with a Kilo‐Aspect Ratio , 2010, Advanced materials.

[45]  S. Zwaag Self‐Healing Materials , 2007 .