Stream Differential Equations: Specification Formats and Solution Methods

Streams, or infinite sequences, are infinite objects of a very simple type, yet they have a rich theory partly due to their ubiquity in mathematics and computer science. Stream differential equations are a coinductive method for specifying streams and stream operations, and their theory has been developed in many papers over the past two decades. In this paper we present a survey of the many results in this area. Our focus is on the classification of different formats of stream differential equations, their solution methods, and the classes of streams they can define. Moreover, we describe in detail the connection between the so-called syntactic solution method and abstract GSOS.

[1]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[2]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[3]  Stefan Milius A Sound and Complete Calculus for Finite Stream Circuits , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[4]  F. Bartels,et al.  On Generalised Coinduction and Probabilistic Specification Formats , 2004 .

[5]  Jan J. M. M. Rutten,et al.  Behavioural differential equations: a coinductive calculus of streams, automata, and power series , 2003, Theor. Comput. Sci..

[6]  Jurriaan Rot,et al.  Coalgebraic Bisimulation-Up-To , 2013, SOFSEM.

[7]  Jan J. M. M. Rutten,et al.  A coinductive calculus of streams , 2005, Mathematical Structures in Computer Science.

[8]  Jan J. M. M. Rutten,et al.  A Final Coalgebra for k-regular Sequences , 2014, Horizons of the Mind.

[9]  Hans Zantema,et al.  Proving Equality of Streams Automatically , 2011, RTA.

[10]  Jan Willem Klop,et al.  Productivity of stream definitions , 2007, Theor. Comput. Sci..

[11]  Ichiro Hasuo,et al.  Context-Free Languages via Coalgebraic Trace Semantics , 2005, CALCO.

[12]  Grigore Rosu,et al.  CIRC : A Circular Coinductive Prover , 2007, CALCO.

[13]  Jan J. M. M. Rutten,et al.  On the Final Coalgebra of Automatic Sequences , 2012, Logic and Program Semantics.

[14]  Mario Baum,et al.  A Treatise On The Calculus Of Finite Differences , 1961, The Mathematical Gazette.

[15]  Bartek Klin Bialgebraic methods and modal logic in structural operational semantics , 2009, Inf. Comput..

[16]  Neil J. A. Sloane,et al.  The encyclopedia of integer sequences , 1995 .

[17]  Falk Bartels,et al.  Generalised coinduction , 2003, Mathematical Structures in Computer Science.

[18]  John Power,et al.  Category theory for operational semantics , 2004, Theor. Comput. Sci..

[19]  Bart Jacobs,et al.  Distributive laws for the coinductive solution of recursive equations , 2006, Inf. Comput..

[20]  Tarmo Uustalu,et al.  Proceedings of the 18th ACM SIGPLAN international conference on Functional programming , 2013, ICFP 2013.

[21]  Jan J. M. M. Rutten,et al.  A tutorial on coinductive stream calculus and signal flow graphs , 2005, Theor. Comput. Sci..

[22]  Jörg Endrullis,et al.  Lazy productivity via termination , 2011, Theor. Comput. Sci..

[23]  Alexandra Silva,et al.  Sound and Complete Axiomatizations of Coalgebraic Language Equivalence , 2011, TOCL.

[24]  Clemens Kupke Stream Differential Equations: concrete formats for coinductive definitions , 2011 .

[25]  Jan J. M. M. Rutten Elements of Stream Calculus (An Extensive Exercise in Coinduction) , 2001, MFPS.

[26]  R. Nigel Horspool,et al.  A New Representation of the Rational Numbers for Fast Easy Arithmetic , 1979, SIAM J. Comput..

[27]  Janusz A. Brzozowski,et al.  Derivatives of Regular Expressions , 1964, JACM.

[28]  Joost Winter,et al.  Coalgebraic Characterizations of Automata-Theoretic Classes , 2014 .

[29]  Jurriaan Rot,et al.  Presenting Distributive Laws , 2013, CALCO.

[30]  Jan J. M. M. Rutten,et al.  Newton Series, Coinductively , 2015, ICTAC.

[31]  Martín Hötzel Escardó,et al.  Calculus in coinductive form , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[32]  Marcello M. Bonsangue,et al.  (Co)Algebraic Characterizations of Signal Flow Graphs , 2014, Horizons of the Mind.

[33]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[34]  Hans Zantema,et al.  Well-definedness of Streams by Transformation and Termination , 2010, Log. Methods Comput. Sci..

[35]  R. Tennant Algebra , 1941, Nature.

[36]  Luca Aceto,et al.  Structural Operational Semantics , 1999, Handbook of Process Algebra.

[37]  Hiroshi Watanabe,et al.  Well-behaved Translations between Structural Operational Semantics , 2002, CMCS.

[38]  Bart Jacobs,et al.  An introduction to (co)algebra and (co)induction , 2011, Advanced Topics in Bisimulation and Coinduction.

[39]  Marcello M. Bonsangue,et al.  Coalgebraic Characterizations of Context-Free Languages , 2013, Log. Methods Comput. Sci..

[40]  Martin Bodin,et al.  Circular Coinduction in Coq Using Bisimulation-Up-To Techniques , 2013, ITP.

[41]  Jan J. M. M. Rutten,et al.  Complete sets of cooperations , 2010, Inf. Comput..

[42]  Bartek Klin,et al.  Bialgebras for structural operational semantics: An introduction , 2011, Theor. Comput. Sci..

[43]  Grigore Rosu,et al.  CIRC: A Behavioral Verification Tool Based on Circular Coinduction , 2009, CALCO.

[44]  Zoltán Ésik,et al.  The Category of Simulations for Weighted Tree Automata , 2011, Int. J. Found. Comput. Sci..

[45]  Bart Jacobs,et al.  A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages , 2006, Essays Dedicated to Joseph A. Goguen.

[46]  Lawrence S. Moss,et al.  Automatic Sequences and Zip-Specifications , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[47]  Marcello M. Bonsangue,et al.  Defining Context-Free Power Series Coalgebraically , 2012, CMCS.

[48]  J. Conway Regular algebra and finite machines , 1971 .

[49]  Ralf Hinze,et al.  Concrete stream calculus: An extended study , 2010, Journal of Functional Programming.

[50]  Alexandra Silva,et al.  A coalgebraic perspective on linear weighted automata , 2011, Inf. Comput..

[51]  C. Reutenauer,et al.  Noncommutative Rational Series with Applications , 2010 .

[52]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[53]  Alexandra Silva,et al.  Language Constructs for Non-Well-Founded Computation , 2012, ESOP.

[54]  Robert Atkey,et al.  Productive coprogramming with guarded recursion , 2013, ICFP.

[55]  Chung-Kwong Yuen Hamming numbers, lazy evaluation, and eager disposal , 1992, SIGP.

[56]  Jan J. M. M. Rutten,et al.  Symbolic Synthesis of Mealy Machines from Arithmetic Bitstream Functions , 2010, Sci. Ann. Comput. Sci..

[57]  John Power,et al.  Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and comonads , 2000, CMCS.

[58]  Helle Hvid Hansen,et al.  Pointwise extensions of GSOS-defined operations , 2011, Math. Struct. Comput. Sci..

[59]  Joost Winter QStream: A Suite of Streams , 2013, CALCO.

[60]  Dirk Pattinson,et al.  Representations of Stream Processors Using Nested Fixed Points , 2009, Log. Methods Comput. Sci..

[61]  Marcello M. Bonsangue,et al.  Context-free coalgebras , 2015, J. Comput. Syst. Sci..

[62]  Jan J. M. M. Rutten Rational Streams Coalgebraically , 2008, Log. Methods Comput. Sci..

[63]  Jan J. M. M. Rutten Coinductive Counting with Weighted Automata , 2003, J. Autom. Lang. Comb..