Privacy-Preserving Enhanced Collaborative Tagging

Collaborative tagging is one of the most popular services available online, and it allows end user to loosely classify either online or offline resources based on their feedback, expressed in the form of free-text labels (i.e., tags). Although tags may not be per se sensitive information, the wide use of collaborative tagging services increases the risk of cross referencing, thereby seriously compromising user privacy. In this paper, we make a first contribution toward the development of a privacy-preserving collaborative tagging service, by showing how a specific privacy-enhancing technology, namely tag suppression, can be used to protect end-user privacy. Moreover, we analyze how our approach can affect the effectiveness of a policy-based collaborative tagging system that supports enhanced web access functionalities, like content filtering and discovery, based on preferences specified by end users.

[1]  Andreas Hotho,et al.  Conceptual Clustering of Social Bookmarking Sites , 2007, LWA.

[2]  Jakob Voß,et al.  Tagging, Folksonomy & Co - Renaissance of Manual Indexing? , 2007, ArXiv.

[3]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[4]  Secure Database Systems , 2009, Encyclopedia of Database Systems.

[5]  Susan B. Barnes,et al.  A privacy paradox: Social networking in the United States , 2006, First Monday.

[6]  Hector Garcia-Molina,et al.  Social tag prediction , 2008, SIGIR '08.

[7]  Jordi Forné,et al.  A Privacy-Protecting Architecture for Collaborative Filtering via Forgery and Suppression of Ratings , 2011, DPM/SETOP.

[8]  Barbara Carminati,et al.  Combining Social Networks and Semantic Web Technologies for Personalizing Web Access , 2008, CollaborateCom.

[9]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[10]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[11]  Enrique Frías-Martínez,et al.  A Study on the Granularity of User Modeling for Tag Prediction , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[12]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[13]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[14]  Peter Mika,et al.  Ontologies are us: A unified model of social networks and semantics , 2005, J. Web Semant..

[15]  Jorge Nocedal,et al.  An interior algorithm for nonlinear optimization that combines line search and trust region steps , 2006, Math. Program..

[16]  Enrico Motta,et al.  Integrating Folksonomies with the Semantic Web , 2007, ESWC.

[17]  Hans-Peter Kriegel,et al.  Hierarchical Bayesian Models for Collaborative Tagging Systems , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[18]  Mor Naaman,et al.  HT06, tagging paper, taxonomy, Flickr, academic article, to read , 2006, HYPERTEXT '06.

[19]  Wendy E. Mackay,et al.  Triggers and barriers to customizing software , 1991, CHI.

[20]  Jennifer Golbeck,et al.  Combining Provenance with Trust in Social Networks for Semantic Web Content Filtering , 2006, IPAW.

[21]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[22]  Wenliang Du,et al.  SVD-based collaborative filtering with privacy , 2005, SAC '05.

[23]  Ciro Cattuto,et al.  Evaluating similarity measures for emergent semantics of social tagging , 2009, WWW '09.

[24]  Bamshad Mobasher,et al.  Personalized recommendation in social tagging systems using hierarchical clustering , 2008, RecSys '08.

[25]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[26]  Bart Preneel,et al.  APES - Anonymity and Privacy in Electronic Services , 2003, Datenschutz und Datensicherheit.

[27]  Yun Zhang,et al.  Tag-based user modeling using formal concept analysis , 2008, CIT.

[28]  Josep Domingo-Ferrer,et al.  Query Profile Obfuscation by Means of Optimal Query Exchange between Users , 2012, IEEE Transactions on Dependable and Secure Computing.

[29]  Qi Wang,et al.  On the privacy preserving properties of random data perturbation techniques , 2003, Third IEEE International Conference on Data Mining.

[30]  Bart Preneel,et al.  Towards Measuring Anonymity , 2002, Privacy Enhancing Technologies.

[31]  Wenliang Du,et al.  Deriving private information from randomized data , 2005, SIGMOD '05.

[32]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[33]  Greg Hamerly,et al.  Alternatives to the k-means algorithm that find better clusterings , 2002, CIKM '02.

[34]  Marcel Worring,et al.  Learning Social Tag Relevance by Neighbor Voting , 2009, IEEE Transactions on Multimedia.

[35]  Wenliang Du,et al.  Privacy-preserving collaborative filtering using randomized perturbation techniques , 2003, Third IEEE International Conference on Data Mining.

[36]  Jordi Forné,et al.  An Information-Theoretic Privacy Criterion for Query Forgery in Information Retrieval , 2011, FGIT-SecTech.

[37]  Yong Yu,et al.  Exploring social annotations for the semantic web , 2006, WWW '06.

[38]  Alessandro Acquisti,et al.  Information revelation and privacy in online social networks , 2005, WPES '05.

[39]  Hector Garcia-Molina,et al.  Taxonomy of trust: Categorizing P2P reputation systems , 2006, Comput. Networks.

[40]  Jordi Forné,et al.  Optimized Query Forgery for Private Information Retrieval , 2010, IEEE Transactions on Information Theory.

[41]  Georgia Koutrika,et al.  Can social bookmarking improve web search? , 2008, WSDM '08.

[42]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[43]  Jordi Forné,et al.  A Privacy-Preserving Architecture for the Semantic Web Based on Tag Suppression , 2010, TrustBus.

[44]  Peter Mika Ontologies Are Us: A Unified Model of Social Networks and Semantics , 2005, International Semantic Web Conference.

[45]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[46]  Wolfgang Nejdl,et al.  Can all tags be used for search? , 2008, CIKM '08.